{"title":"RAFT聚合合成聚甲基丙烯酸酯的化学再循环。","authors":"Hyun Suk Wang, Athina Anastasaki","doi":"10.2533/chimia.2023.217","DOIUrl":null,"url":null,"abstract":"<p><p>Reversing controlled radical polymerization and regenerating the monomer has been a long-standing challenge for fundamental research and practical applications. Herein, we report a highly efficient depolymerization method for various polymethacrylates synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The depolymerization process, which does not require any catalyst, exhibits near-quantitative conversions of up to 92%. The key aspect of our approach is the utilization of the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C. These radicals trigger a rapid unzipping of the polymethacrylates. The depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. Our depolymerization strategy offers a promising route towards the development of sustainable and efficient recycling methods for complex polymer materials.</p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"10 1","pages":"217-220"},"PeriodicalIF":1.1000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chemical Recycling of Polymethacrylates Synthesized by RAFT Polymerization.\",\"authors\":\"Hyun Suk Wang, Athina Anastasaki\",\"doi\":\"10.2533/chimia.2023.217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reversing controlled radical polymerization and regenerating the monomer has been a long-standing challenge for fundamental research and practical applications. Herein, we report a highly efficient depolymerization method for various polymethacrylates synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The depolymerization process, which does not require any catalyst, exhibits near-quantitative conversions of up to 92%. The key aspect of our approach is the utilization of the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C. These radicals trigger a rapid unzipping of the polymethacrylates. The depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. Our depolymerization strategy offers a promising route towards the development of sustainable and efficient recycling methods for complex polymer materials.</p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"10 1\",\"pages\":\"217-220\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2023.217\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2023.217","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Chemical Recycling of Polymethacrylates Synthesized by RAFT Polymerization.
Reversing controlled radical polymerization and regenerating the monomer has been a long-standing challenge for fundamental research and practical applications. Herein, we report a highly efficient depolymerization method for various polymethacrylates synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The depolymerization process, which does not require any catalyst, exhibits near-quantitative conversions of up to 92%. The key aspect of our approach is the utilization of the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C. These radicals trigger a rapid unzipping of the polymethacrylates. The depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. Our depolymerization strategy offers a promising route towards the development of sustainable and efficient recycling methods for complex polymer materials.
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.