{"title":"脲醛树脂的最新进展:将结晶性热固性聚合物转化为无定形聚合物","authors":"E. Wibowo, Byung‐Dae Park, V. Causin","doi":"10.1080/15583724.2021.2014520","DOIUrl":null,"url":null,"abstract":"Abstract Since their first synthesis in 1884, thermosetting and amorphous urea–formaldehyde (UF) resins have mainly been used as wood adhesives yet are known to be responsible for the release of formaldehyde, which contaminates indoor air and causes sick building syndrome. An easy and efficient way of reducing formaldehyde emissions is to synthesize UF resins with a low formaldehyde-to-urea (F/U) molar ratio (∼1.0). However, low molar ratio UF resins become crystalline polymers, as they form hydrogen bonds between linear molecules in the cured state, which inhibits the formation of a proper cross-linked structure and results in poor adhesion strength. Herein, recent advances in converting crystalline UF resins back to amorphous polymers through the blocking of hydrogen bonds are described, which consequently increases their cohesion, leading to a simultaneous improvement in their adhesion properties and formaldehyde emissions. Graphical Abstract","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"45 1","pages":"722 - 756"},"PeriodicalIF":11.1000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Recent Advances in Urea–Formaldehyde Resins: Converting Crystalline Thermosetting Polymers Back to Amorphous Ones\",\"authors\":\"E. Wibowo, Byung‐Dae Park, V. Causin\",\"doi\":\"10.1080/15583724.2021.2014520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Since their first synthesis in 1884, thermosetting and amorphous urea–formaldehyde (UF) resins have mainly been used as wood adhesives yet are known to be responsible for the release of formaldehyde, which contaminates indoor air and causes sick building syndrome. An easy and efficient way of reducing formaldehyde emissions is to synthesize UF resins with a low formaldehyde-to-urea (F/U) molar ratio (∼1.0). However, low molar ratio UF resins become crystalline polymers, as they form hydrogen bonds between linear molecules in the cured state, which inhibits the formation of a proper cross-linked structure and results in poor adhesion strength. Herein, recent advances in converting crystalline UF resins back to amorphous polymers through the blocking of hydrogen bonds are described, which consequently increases their cohesion, leading to a simultaneous improvement in their adhesion properties and formaldehyde emissions. Graphical Abstract\",\"PeriodicalId\":20326,\"journal\":{\"name\":\"Polymer Reviews\",\"volume\":\"45 1\",\"pages\":\"722 - 756\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15583724.2021.2014520\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2021.2014520","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Recent Advances in Urea–Formaldehyde Resins: Converting Crystalline Thermosetting Polymers Back to Amorphous Ones
Abstract Since their first synthesis in 1884, thermosetting and amorphous urea–formaldehyde (UF) resins have mainly been used as wood adhesives yet are known to be responsible for the release of formaldehyde, which contaminates indoor air and causes sick building syndrome. An easy and efficient way of reducing formaldehyde emissions is to synthesize UF resins with a low formaldehyde-to-urea (F/U) molar ratio (∼1.0). However, low molar ratio UF resins become crystalline polymers, as they form hydrogen bonds between linear molecules in the cured state, which inhibits the formation of a proper cross-linked structure and results in poor adhesion strength. Herein, recent advances in converting crystalline UF resins back to amorphous polymers through the blocking of hydrogen bonds are described, which consequently increases their cohesion, leading to a simultaneous improvement in their adhesion properties and formaldehyde emissions. Graphical Abstract
期刊介绍:
Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers.
The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.