{"title":"芦荟根茎中的一种二氢异香豆素","authors":"Negera Abdissa, Abdulwahid Abamecha","doi":"10.4172/2475-7675.1000301","DOIUrl":null,"url":null,"abstract":"Chromatographic separation of the chloroform/methanol (1:1) extract of the Aloe pulcherrima rhizome afforded a new dihydroisocoumarin derivative (1) along with six anthraquinone derivatives (2-7). The chemical structures of the compounds were established based on spectroscopic analyses including NMR (1H and 13C NMR, 1H-1H COSY, HMQC, HMBC, NOESY), MS and comparison with reported literature. The isolated compounds were evaluated for in vitro antibacterial and antiplasmodial activities. Almost all compounds showed antibacterial activity with the highest activity observed for compound 5 against Enterococcus faecalis. Whereas, only compound, 3, 4, 5 and 6 showed antiplasmodial activity against chloroquine-resistant (W2) strain of Plasmodium falciparum.","PeriodicalId":18897,"journal":{"name":"Natural products chemistry & research","volume":"75 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Dihydroisocoumarin from the Rhizome of Aloe pulcherrima\",\"authors\":\"Negera Abdissa, Abdulwahid Abamecha\",\"doi\":\"10.4172/2475-7675.1000301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chromatographic separation of the chloroform/methanol (1:1) extract of the Aloe pulcherrima rhizome afforded a new dihydroisocoumarin derivative (1) along with six anthraquinone derivatives (2-7). The chemical structures of the compounds were established based on spectroscopic analyses including NMR (1H and 13C NMR, 1H-1H COSY, HMQC, HMBC, NOESY), MS and comparison with reported literature. The isolated compounds were evaluated for in vitro antibacterial and antiplasmodial activities. Almost all compounds showed antibacterial activity with the highest activity observed for compound 5 against Enterococcus faecalis. Whereas, only compound, 3, 4, 5 and 6 showed antiplasmodial activity against chloroquine-resistant (W2) strain of Plasmodium falciparum.\",\"PeriodicalId\":18897,\"journal\":{\"name\":\"Natural products chemistry & research\",\"volume\":\"75 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural products chemistry & research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2475-7675.1000301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural products chemistry & research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2475-7675.1000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dihydroisocoumarin from the Rhizome of Aloe pulcherrima
Chromatographic separation of the chloroform/methanol (1:1) extract of the Aloe pulcherrima rhizome afforded a new dihydroisocoumarin derivative (1) along with six anthraquinone derivatives (2-7). The chemical structures of the compounds were established based on spectroscopic analyses including NMR (1H and 13C NMR, 1H-1H COSY, HMQC, HMBC, NOESY), MS and comparison with reported literature. The isolated compounds were evaluated for in vitro antibacterial and antiplasmodial activities. Almost all compounds showed antibacterial activity with the highest activity observed for compound 5 against Enterococcus faecalis. Whereas, only compound, 3, 4, 5 and 6 showed antiplasmodial activity against chloroquine-resistant (W2) strain of Plasmodium falciparum.