{"title":"准确核心集概述","authors":"Ibrahim Jubran, Alaa Maalouf, D. Feldman","doi":"10.1002/widm.1429","DOIUrl":null,"url":null,"abstract":"A coreset of an input set is its small summarization, such that solving a problem on the coreset as its input, provably yields the same result as solving the same problem on the original (full) set, for a given family of problems (models/classifiers/loss functions). Coresets have been suggested for many fundamental problems, for example, in machine/deep learning, computer vision, databases, and theoretical computer science. This introductory paper was written following requests regarding the many inconsistent coreset definitions, lack of source code, the required deep theoretical background from different fields, and the dense papers that make it hard for beginners to apply and develop coresets. The article provides folklore, classic, and simple results including step‐by‐step proofs and figures, for the simplest (accurate) coresets. Nevertheless, we did not find most of their constructions in the literature. Moreover, we expect that putting them together in a retrospective context would help the reader to grasp current results that usually generalize these fundamental observations. Experts might appreciate the unified notation and comparison table for existing results. Open source code is provided for all presented algorithms, to demonstrate their usage, and to support the readers who are more familiar with programming than mathematics.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"5 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Overview of accurate coresets\",\"authors\":\"Ibrahim Jubran, Alaa Maalouf, D. Feldman\",\"doi\":\"10.1002/widm.1429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A coreset of an input set is its small summarization, such that solving a problem on the coreset as its input, provably yields the same result as solving the same problem on the original (full) set, for a given family of problems (models/classifiers/loss functions). Coresets have been suggested for many fundamental problems, for example, in machine/deep learning, computer vision, databases, and theoretical computer science. This introductory paper was written following requests regarding the many inconsistent coreset definitions, lack of source code, the required deep theoretical background from different fields, and the dense papers that make it hard for beginners to apply and develop coresets. The article provides folklore, classic, and simple results including step‐by‐step proofs and figures, for the simplest (accurate) coresets. Nevertheless, we did not find most of their constructions in the literature. Moreover, we expect that putting them together in a retrospective context would help the reader to grasp current results that usually generalize these fundamental observations. Experts might appreciate the unified notation and comparison table for existing results. Open source code is provided for all presented algorithms, to demonstrate their usage, and to support the readers who are more familiar with programming than mathematics.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1429\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1429","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A coreset of an input set is its small summarization, such that solving a problem on the coreset as its input, provably yields the same result as solving the same problem on the original (full) set, for a given family of problems (models/classifiers/loss functions). Coresets have been suggested for many fundamental problems, for example, in machine/deep learning, computer vision, databases, and theoretical computer science. This introductory paper was written following requests regarding the many inconsistent coreset definitions, lack of source code, the required deep theoretical background from different fields, and the dense papers that make it hard for beginners to apply and develop coresets. The article provides folklore, classic, and simple results including step‐by‐step proofs and figures, for the simplest (accurate) coresets. Nevertheless, we did not find most of their constructions in the literature. Moreover, we expect that putting them together in a retrospective context would help the reader to grasp current results that usually generalize these fundamental observations. Experts might appreciate the unified notation and comparison table for existing results. Open source code is provided for all presented algorithms, to demonstrate their usage, and to support the readers who are more familiar with programming than mathematics.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.