{"title":"印度沿海气溶胶光学深度的年际变化:与天气气象学的关系","authors":"A. Saha, K. Moorthy, K. Niranjan","doi":"10.1175/JAM2256.1","DOIUrl":null,"url":null,"abstract":"Abstract Interannual variations in spectral aerosol optical depths (AOD) were examined using the data obtained from a chain of ground-based multiwavelength solar radiometers from various locations of the Indian peninsula during the dry winter season (January–March) of 1996–2001. All of the stations revealed significant interannual variations, even though the spatial pattern of the variations differed over the years. These interannual variations were found to be significantly influenced by the extent of the southward excursion of the intertropical convergence zone (ITCZ). The years in which the southward excursion of the ITCZ was less (i.e., the years when the wintertime ITCZ was closer to the equator) showed higher AODs than the years in which the ITCZ moved far southward. The spatial variation was found to be influenced by large-scale vertical descent of an air mass over peninsular India, the Arabian Sea, the Indian Ocean, and the Bay of Bengal.","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"45 1","pages":"1066-1077"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Interannual variations of aerosol optical depth over coastal India : Relation to synoptic meteorology\",\"authors\":\"A. Saha, K. Moorthy, K. Niranjan\",\"doi\":\"10.1175/JAM2256.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Interannual variations in spectral aerosol optical depths (AOD) were examined using the data obtained from a chain of ground-based multiwavelength solar radiometers from various locations of the Indian peninsula during the dry winter season (January–March) of 1996–2001. All of the stations revealed significant interannual variations, even though the spatial pattern of the variations differed over the years. These interannual variations were found to be significantly influenced by the extent of the southward excursion of the intertropical convergence zone (ITCZ). The years in which the southward excursion of the ITCZ was less (i.e., the years when the wintertime ITCZ was closer to the equator) showed higher AODs than the years in which the ITCZ moved far southward. The spatial variation was found to be influenced by large-scale vertical descent of an air mass over peninsular India, the Arabian Sea, the Indian Ocean, and the Bay of Bengal.\",\"PeriodicalId\":15026,\"journal\":{\"name\":\"Journal of Applied Meteorology\",\"volume\":\"45 1\",\"pages\":\"1066-1077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JAM2256.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2256.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interannual variations of aerosol optical depth over coastal India : Relation to synoptic meteorology
Abstract Interannual variations in spectral aerosol optical depths (AOD) were examined using the data obtained from a chain of ground-based multiwavelength solar radiometers from various locations of the Indian peninsula during the dry winter season (January–March) of 1996–2001. All of the stations revealed significant interannual variations, even though the spatial pattern of the variations differed over the years. These interannual variations were found to be significantly influenced by the extent of the southward excursion of the intertropical convergence zone (ITCZ). The years in which the southward excursion of the ITCZ was less (i.e., the years when the wintertime ITCZ was closer to the equator) showed higher AODs than the years in which the ITCZ moved far southward. The spatial variation was found to be influenced by large-scale vertical descent of an air mass over peninsular India, the Arabian Sea, the Indian Ocean, and the Bay of Bengal.