藤(菖蒲)纤维基环氧复合材料的耐磨性和物理性能

O. Obiukwu, J. Igboekwe
{"title":"藤(菖蒲)纤维基环氧复合材料的耐磨性和物理性能","authors":"O. Obiukwu, J. Igboekwe","doi":"10.18052/WWW.SCIPRESS.COM/IJET.19.23","DOIUrl":null,"url":null,"abstract":"The effects of fibre content (5–30 wt%) and fibre treatment on abrasion, water absorption, specific gravity, and density properties of epoxy/rattan cane fibre composites were studied. Epoxy resin reinforced with the alkaline treated rattan cane fibre fibres was produced by compression technique in predetermined proportions. Abrasion and physical properties tests were carried out on the developed composites. The results showed that the reinforced composite samples have better enhancement in all the properties tested than the unreinforced control sample. Least Water Absorption (WA) value of 1.4 % were obtained within the 1 week and 2 week for the reinforced samples. Samples reinforced with 10 wt. % rattan fibres had the highest abrasion resistance, while the sample with 5 wt.% rattan fibre addition had the best water absorption resistance. The products of this research could find applications in automotive fields where exposure to moisture and wear are encountered.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abrasion and Physical Properties of Rattan Cane (Calamus deeratus) Fibre Based Epoxy Composites\",\"authors\":\"O. Obiukwu, J. Igboekwe\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/IJET.19.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of fibre content (5–30 wt%) and fibre treatment on abrasion, water absorption, specific gravity, and density properties of epoxy/rattan cane fibre composites were studied. Epoxy resin reinforced with the alkaline treated rattan cane fibre fibres was produced by compression technique in predetermined proportions. Abrasion and physical properties tests were carried out on the developed composites. The results showed that the reinforced composite samples have better enhancement in all the properties tested than the unreinforced control sample. Least Water Absorption (WA) value of 1.4 % were obtained within the 1 week and 2 week for the reinforced samples. Samples reinforced with 10 wt. % rattan fibres had the highest abrasion resistance, while the sample with 5 wt.% rattan fibre addition had the best water absorption resistance. The products of this research could find applications in automotive fields where exposure to moisture and wear are encountered.\",\"PeriodicalId\":13841,\"journal\":{\"name\":\"International Journal of Automotive Engineering and Technologies\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Engineering and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/IJET.19.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Engineering and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/IJET.19.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了纤维含量(5 ~ 30 wt%)和纤维处理对环氧/藤纤维复合材料耐磨性、吸水性、比重和密度性能的影响。采用预先确定比例的压缩法制备了碱法处理的藤纤维增强环氧树脂纤维。对所研制的复合材料进行了耐磨性和物理性能测试。结果表明,增强复合材料试样的各项性能均优于未增强对照试样。增强后1周和2周的吸水率最低,分别为1.4%。添加10 wt.%藤纤维增强试样的耐磨性最高,添加5 wt.%藤纤维增强试样的吸水性能最好。这项研究的产品可以在汽车领域找到应用,暴露在潮湿和磨损遇到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abrasion and Physical Properties of Rattan Cane (Calamus deeratus) Fibre Based Epoxy Composites
The effects of fibre content (5–30 wt%) and fibre treatment on abrasion, water absorption, specific gravity, and density properties of epoxy/rattan cane fibre composites were studied. Epoxy resin reinforced with the alkaline treated rattan cane fibre fibres was produced by compression technique in predetermined proportions. Abrasion and physical properties tests were carried out on the developed composites. The results showed that the reinforced composite samples have better enhancement in all the properties tested than the unreinforced control sample. Least Water Absorption (WA) value of 1.4 % were obtained within the 1 week and 2 week for the reinforced samples. Samples reinforced with 10 wt. % rattan fibres had the highest abrasion resistance, while the sample with 5 wt.% rattan fibre addition had the best water absorption resistance. The products of this research could find applications in automotive fields where exposure to moisture and wear are encountered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biodiesel production from waste frying oil by electrochemical method using stainless steel electrode Numerical investigation of the thermal and acoustic effect of material variations on the exhaust muffler Experimental evaluation of gasoline-hexane fuel blends usage in a spark ignition engine Suspension system design for pedal-assisted cargo E-quadricycle Reducing fuel consumption of a light-duty vehicle by incorporating CuO nanoparticles in compressor lubricant of air-conditioning system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1