{"title":"死亡率下降的年龄模式轮换:统计证据和模型","authors":"J. S. Li, Joseph H. T. Kim","doi":"10.1017/S0269964822000468","DOIUrl":null,"url":null,"abstract":"In the context of mortality forecasting, “rotation” refers to the phenomenon that mortality decline accelerates at older ages but decelerates at younger ages. Since rotation is typically subtle, it is difficult to be confirmed and modeled in a statistical, data-driven manner. In this paper, we attempt to overcome this challenge by proposing an alternative modeling approach. The approach encompasses a new model structure, which includes a component that is devoted to measuring rotation. It also features a modeling technique known as ANCOVA, which allows us to statistically detect rotation and extrapolate the phenomenon into the future. Our proposed approach yields plausible mortality forecasts that are similar to those produced by Li et al. [Extending the Lee-Carter method to model the rotation of age patterns of mortality decline for long-term projections. Demography 50 (6), 2037–205, and may be considered more advantageous than the approach of Li et al. in the sense that it is able to generate not only static but also stochastic forecasts.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"34 1","pages":"621 - 652"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotation in age patterns of mortality decline: statistical evidence and modeling\",\"authors\":\"J. S. Li, Joseph H. T. Kim\",\"doi\":\"10.1017/S0269964822000468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of mortality forecasting, “rotation” refers to the phenomenon that mortality decline accelerates at older ages but decelerates at younger ages. Since rotation is typically subtle, it is difficult to be confirmed and modeled in a statistical, data-driven manner. In this paper, we attempt to overcome this challenge by proposing an alternative modeling approach. The approach encompasses a new model structure, which includes a component that is devoted to measuring rotation. It also features a modeling technique known as ANCOVA, which allows us to statistically detect rotation and extrapolate the phenomenon into the future. Our proposed approach yields plausible mortality forecasts that are similar to those produced by Li et al. [Extending the Lee-Carter method to model the rotation of age patterns of mortality decline for long-term projections. Demography 50 (6), 2037–205, and may be considered more advantageous than the approach of Li et al. in the sense that it is able to generate not only static but also stochastic forecasts.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"34 1\",\"pages\":\"621 - 652\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0269964822000468\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0269964822000468","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Rotation in age patterns of mortality decline: statistical evidence and modeling
In the context of mortality forecasting, “rotation” refers to the phenomenon that mortality decline accelerates at older ages but decelerates at younger ages. Since rotation is typically subtle, it is difficult to be confirmed and modeled in a statistical, data-driven manner. In this paper, we attempt to overcome this challenge by proposing an alternative modeling approach. The approach encompasses a new model structure, which includes a component that is devoted to measuring rotation. It also features a modeling technique known as ANCOVA, which allows us to statistically detect rotation and extrapolate the phenomenon into the future. Our proposed approach yields plausible mortality forecasts that are similar to those produced by Li et al. [Extending the Lee-Carter method to model the rotation of age patterns of mortality decline for long-term projections. Demography 50 (6), 2037–205, and may be considered more advantageous than the approach of Li et al. in the sense that it is able to generate not only static but also stochastic forecasts.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.