M. Bochalya, P. K. Kanaujia, G. Prakash, Sunil Kumar
{"title":"cu基二维无机-有机杂化钙钛矿体系的结构相变和热稳定性","authors":"M. Bochalya, P. K. Kanaujia, G. Prakash, Sunil Kumar","doi":"10.1063/1.5122329","DOIUrl":null,"url":null,"abstract":"Structural phase transitions and thermal stability inlead-free layered inorganic-organic (IO) hybrid systems are reported. Copper chloride-based (C12H25NH3)2CuCl4 and (C6H9C2H4NH3)2CuCl4 systemsshow better stability against copper bromide-based (C12H25NH3)2CuBr4 and (C6H9C2H4NH3)2CuBr4 systems. These IO hybrids exhibit multiple solid-solid structural phase transitions depending upon the length of alkylammonium chain and arrangement of metal-halogen network. The estimated decomposition temperatures are 202°C, 117°C, 187°C, and 102°C for (C12H25NH3)2CuCl4, (C6H9C2H4NH3)2CuCl4, (C12H25NH3)2CuBr4, and (C6H9C2H4NH3)2CuBr4, respectively. The optoelectronic and other properties of these materials can be tuned by selecting proper composition of organic and metal halides during solution processed growth.Structural phase transitions and thermal stability inlead-free layered inorganic-organic (IO) hybrid systems are reported. Copper chloride-based (C12H25NH3)2CuCl4 and (C6H9C2H4NH3)2CuCl4 systemsshow better stability against copper bromide-based (C12H25NH3)2CuBr4 and (C6H9C2H4NH3)2CuBr4 systems. These IO hybrids exhibit multiple solid-solid structural phase transitions depending upon the length of alkylammonium chain and arrangement of metal-halogen network. The estimated decomposition temperatures are 202°C, 117°C, 187°C, and 102°C for (C12H25NH3)2CuCl4, (C6H9C2H4NH3)2CuCl4, (C12H25NH3)2CuBr4, and (C6H9C2H4NH3)2CuBr4, respectively. The optoelectronic and other properties of these materials can be tuned by selecting proper composition of organic and metal halides during solution processed growth.","PeriodicalId":7262,"journal":{"name":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Structural phase transitions and thermal stability in Cu-based 2D inorganic-organic hybrid perovskite systems\",\"authors\":\"M. Bochalya, P. K. Kanaujia, G. Prakash, Sunil Kumar\",\"doi\":\"10.1063/1.5122329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural phase transitions and thermal stability inlead-free layered inorganic-organic (IO) hybrid systems are reported. Copper chloride-based (C12H25NH3)2CuCl4 and (C6H9C2H4NH3)2CuCl4 systemsshow better stability against copper bromide-based (C12H25NH3)2CuBr4 and (C6H9C2H4NH3)2CuBr4 systems. These IO hybrids exhibit multiple solid-solid structural phase transitions depending upon the length of alkylammonium chain and arrangement of metal-halogen network. The estimated decomposition temperatures are 202°C, 117°C, 187°C, and 102°C for (C12H25NH3)2CuCl4, (C6H9C2H4NH3)2CuCl4, (C12H25NH3)2CuBr4, and (C6H9C2H4NH3)2CuBr4, respectively. The optoelectronic and other properties of these materials can be tuned by selecting proper composition of organic and metal halides during solution processed growth.Structural phase transitions and thermal stability inlead-free layered inorganic-organic (IO) hybrid systems are reported. Copper chloride-based (C12H25NH3)2CuCl4 and (C6H9C2H4NH3)2CuCl4 systemsshow better stability against copper bromide-based (C12H25NH3)2CuBr4 and (C6H9C2H4NH3)2CuBr4 systems. These IO hybrids exhibit multiple solid-solid structural phase transitions depending upon the length of alkylammonium chain and arrangement of metal-halogen network. The estimated decomposition temperatures are 202°C, 117°C, 187°C, and 102°C for (C12H25NH3)2CuCl4, (C6H9C2H4NH3)2CuCl4, (C12H25NH3)2CuBr4, and (C6H9C2H4NH3)2CuBr4, respectively. The optoelectronic and other properties of these materials can be tuned by selecting proper composition of organic and metal halides during solution processed growth.\",\"PeriodicalId\":7262,\"journal\":{\"name\":\"ADVANCES IN BASIC SCIENCE (ICABS 2019)\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADVANCES IN BASIC SCIENCE (ICABS 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5122329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5122329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural phase transitions and thermal stability in Cu-based 2D inorganic-organic hybrid perovskite systems
Structural phase transitions and thermal stability inlead-free layered inorganic-organic (IO) hybrid systems are reported. Copper chloride-based (C12H25NH3)2CuCl4 and (C6H9C2H4NH3)2CuCl4 systemsshow better stability against copper bromide-based (C12H25NH3)2CuBr4 and (C6H9C2H4NH3)2CuBr4 systems. These IO hybrids exhibit multiple solid-solid structural phase transitions depending upon the length of alkylammonium chain and arrangement of metal-halogen network. The estimated decomposition temperatures are 202°C, 117°C, 187°C, and 102°C for (C12H25NH3)2CuCl4, (C6H9C2H4NH3)2CuCl4, (C12H25NH3)2CuBr4, and (C6H9C2H4NH3)2CuBr4, respectively. The optoelectronic and other properties of these materials can be tuned by selecting proper composition of organic and metal halides during solution processed growth.Structural phase transitions and thermal stability inlead-free layered inorganic-organic (IO) hybrid systems are reported. Copper chloride-based (C12H25NH3)2CuCl4 and (C6H9C2H4NH3)2CuCl4 systemsshow better stability against copper bromide-based (C12H25NH3)2CuBr4 and (C6H9C2H4NH3)2CuBr4 systems. These IO hybrids exhibit multiple solid-solid structural phase transitions depending upon the length of alkylammonium chain and arrangement of metal-halogen network. The estimated decomposition temperatures are 202°C, 117°C, 187°C, and 102°C for (C12H25NH3)2CuCl4, (C6H9C2H4NH3)2CuCl4, (C12H25NH3)2CuBr4, and (C6H9C2H4NH3)2CuBr4, respectively. The optoelectronic and other properties of these materials can be tuned by selecting proper composition of organic and metal halides during solution processed growth.