基于像素的流水线硬件架构,用于高性能haar类特征提取

Y. Fujita, F. An, A. Luo, X. Zhang, Lei Chen, H. Mattausch
{"title":"基于像素的流水线硬件架构,用于高性能haar类特征提取","authors":"Y. Fujita, F. An, A. Luo, X. Zhang, Lei Chen, H. Mattausch","doi":"10.1109/APCCAS.2016.7804044","DOIUrl":null,"url":null,"abstract":"Feature extraction, which is one of the basic tasks for pattern recognition, has often high computational cost and large memory usage. In this work, we propose a pixel-based pipeline hardware architecture for Haar-like feature extraction, implemented in 0.18 μm CMOS technology with 1.76 mm2 core area. Pixel-input speed relies on the working frequency of the image sensor so that features are extracted in real time without on-chip image buffer and complex computational procedures. The fabricated chip consumes 4.78 mW power at 1.8 V supply voltage and 12.5 MHz frequency during 30 fps VGA video input. Furthermore, a processing time of 3.07 ms per VGA frame with power dissipation of 36.25 mW at 100 MHz frequency is possible.","PeriodicalId":6495,"journal":{"name":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"84 1","pages":"611-612"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pixel-based pipeline hardware architecture for high-performance Haar-like feature extraction\",\"authors\":\"Y. Fujita, F. An, A. Luo, X. Zhang, Lei Chen, H. Mattausch\",\"doi\":\"10.1109/APCCAS.2016.7804044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction, which is one of the basic tasks for pattern recognition, has often high computational cost and large memory usage. In this work, we propose a pixel-based pipeline hardware architecture for Haar-like feature extraction, implemented in 0.18 μm CMOS technology with 1.76 mm2 core area. Pixel-input speed relies on the working frequency of the image sensor so that features are extracted in real time without on-chip image buffer and complex computational procedures. The fabricated chip consumes 4.78 mW power at 1.8 V supply voltage and 12.5 MHz frequency during 30 fps VGA video input. Furthermore, a processing time of 3.07 ms per VGA frame with power dissipation of 36.25 mW at 100 MHz frequency is possible.\",\"PeriodicalId\":6495,\"journal\":{\"name\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"84 1\",\"pages\":\"611-612\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2016.7804044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2016.7804044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征提取是模式识别的基本任务之一,计算量大,内存占用大。在这项工作中,我们提出了一种基于像素的流水线硬件架构,用于haar类特征提取,该架构采用0.18 μm CMOS技术,核心面积为1.76 mm2。像素输入速度依赖于图像传感器的工作频率,因此无需片上图像缓冲和复杂的计算过程即可实时提取特征。该芯片在1.8 V电源电压和12.5 MHz频率下,在30 fps的VGA视频输入下,功耗为4.78 mW。此外,在100 MHz频率下,每个VGA帧的处理时间为3.07 ms,功耗为36.25 mW是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pixel-based pipeline hardware architecture for high-performance Haar-like feature extraction
Feature extraction, which is one of the basic tasks for pattern recognition, has often high computational cost and large memory usage. In this work, we propose a pixel-based pipeline hardware architecture for Haar-like feature extraction, implemented in 0.18 μm CMOS technology with 1.76 mm2 core area. Pixel-input speed relies on the working frequency of the image sensor so that features are extracted in real time without on-chip image buffer and complex computational procedures. The fabricated chip consumes 4.78 mW power at 1.8 V supply voltage and 12.5 MHz frequency during 30 fps VGA video input. Furthermore, a processing time of 3.07 ms per VGA frame with power dissipation of 36.25 mW at 100 MHz frequency is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT and Blockchain: Technologies, Challenges, and Applications Teaching Practice Platform and Innovation Course Construction for Postgraduate Majoring in Electronics Information FPGA implementation of edge detection for Sobel operator in eight directions Analog integrated audio frequency synthesizer Analysis of non-ideal effects and electrochemical impedance spectroscopy of arrayed flexible NiO-based pH sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1