{"title":"部分注浆砌体墙体抗剪强度的ECBO-ANN混合算法","authors":"A. Kaveh, Neda Khavaninzadeh","doi":"10.3311/ppci.22653","DOIUrl":null,"url":null,"abstract":"In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid ECBO–ANN Algorithm for Shear Strength of Partially Grouted Masonry Walls\",\"authors\":\"A. Kaveh, Neda Khavaninzadeh\",\"doi\":\"10.3311/ppci.22653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22653\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22653","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Hybrid ECBO–ANN Algorithm for Shear Strength of Partially Grouted Masonry Walls
In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.