谷歌-维基百科-推特模型作为冠状病毒死亡人数的领先指标

Q1 Economics, Econometrics and Finance Intelligent Systems in Accounting, Finance and Management Pub Date : 2020-09-28 DOI:10.1002/isaf.1482
Daniel E. O'Leary, Veda C. Storey
{"title":"谷歌-维基百科-推特模型作为冠状病毒死亡人数的领先指标","authors":"Daniel E. O'Leary,&nbsp;Veda C. Storey","doi":"10.1002/isaf.1482","DOIUrl":null,"url":null,"abstract":"<p>Forecasting the number of cases and the number of deaths in a pandemic provides critical information to governments and health officials, as seen in the management of the coronavirus outbreak. But things change. Thus, there is a constant search for real-time and leading indicator variables that can provide insights into disease propagation models. Researchers have found that information about social media and search engine use can provide insights into the diffusion of flu and other diseases. Consistent with this finding, we found that a model with the number of Google searches, Twitter tweets, and Wikipedia page views provides a leading indicator model of the number of people in the USA who will become infected and die from the coronavirus. Although we focus on the current coronavirus pandemic, other recent viruses have threatened pandemics (e.g. severe acute respiratory syndrome). Since future and existing diseases are likely to follow a similar search for information, our insights may prove fruitful in dealing with the coronavirus and other such diseases, particularly in the early phases of the disease.</p><p><b>Subject terms</b>: coronavirus, COVID-19, unintentional crowd, Google searches, Wikipedia page views, Twitter tweets, models of disease diffusion.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"27 3","pages":"151-158"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1482","citationCount":"27","resultStr":"{\"title\":\"A Google–Wikipedia–Twitter Model as a Leading Indicator of the Numbers of Coronavirus Deaths\",\"authors\":\"Daniel E. O'Leary,&nbsp;Veda C. Storey\",\"doi\":\"10.1002/isaf.1482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Forecasting the number of cases and the number of deaths in a pandemic provides critical information to governments and health officials, as seen in the management of the coronavirus outbreak. But things change. Thus, there is a constant search for real-time and leading indicator variables that can provide insights into disease propagation models. Researchers have found that information about social media and search engine use can provide insights into the diffusion of flu and other diseases. Consistent with this finding, we found that a model with the number of Google searches, Twitter tweets, and Wikipedia page views provides a leading indicator model of the number of people in the USA who will become infected and die from the coronavirus. Although we focus on the current coronavirus pandemic, other recent viruses have threatened pandemics (e.g. severe acute respiratory syndrome). Since future and existing diseases are likely to follow a similar search for information, our insights may prove fruitful in dealing with the coronavirus and other such diseases, particularly in the early phases of the disease.</p><p><b>Subject terms</b>: coronavirus, COVID-19, unintentional crowd, Google searches, Wikipedia page views, Twitter tweets, models of disease diffusion.</p>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"27 3\",\"pages\":\"151-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/isaf.1482\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 27

摘要

预测大流行中的病例数和死亡人数为政府和卫生官员提供了关键信息,这在冠状病毒爆发的管理中可见一斑。但世事无常。因此,不断寻找实时和领先的指标变量,可以提供对疾病传播模型的见解。研究人员发现,有关社交媒体和搜索引擎使用的信息可以为流感和其他疾病的传播提供见解。与这一发现一致,我们发现,一个包含谷歌搜索次数、推特推文次数和维基百科页面浏览量的模型,提供了美国感染和死于冠状病毒的人数的领先指标模型。虽然我们的重点是当前的冠状病毒大流行,但最近其他病毒也有大流行的威胁(例如严重急性呼吸系统综合征)。由于未来和现有的疾病可能会遵循类似的信息搜索,因此我们的见解可能会在应对冠状病毒和其他此类疾病方面取得成果,特别是在疾病的早期阶段。主题术语:冠状病毒、COVID-19、无意人群、谷歌搜索、维基百科页面浏览量、推特推文、疾病传播模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Google–Wikipedia–Twitter Model as a Leading Indicator of the Numbers of Coronavirus Deaths

Forecasting the number of cases and the number of deaths in a pandemic provides critical information to governments and health officials, as seen in the management of the coronavirus outbreak. But things change. Thus, there is a constant search for real-time and leading indicator variables that can provide insights into disease propagation models. Researchers have found that information about social media and search engine use can provide insights into the diffusion of flu and other diseases. Consistent with this finding, we found that a model with the number of Google searches, Twitter tweets, and Wikipedia page views provides a leading indicator model of the number of people in the USA who will become infected and die from the coronavirus. Although we focus on the current coronavirus pandemic, other recent viruses have threatened pandemics (e.g. severe acute respiratory syndrome). Since future and existing diseases are likely to follow a similar search for information, our insights may prove fruitful in dealing with the coronavirus and other such diseases, particularly in the early phases of the disease.

Subject terms: coronavirus, COVID-19, unintentional crowd, Google searches, Wikipedia page views, Twitter tweets, models of disease diffusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
期刊最新文献
The Technological Innovation of the Metaverse in Financial Sector: Current State, Opportunities, and Open Challenges Issue Information Liquidity forecasting at corporate and subsidiary levels using machine learning Identification of fraudulent financial statements through a multi-label classification approach Predicting carbon and oil price returns using hybrid models based on machine and deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1