嵌套推土机的距离,以实现有效的集群跟踪

Hardy Kremer, Stephan Günnemann, Simon Wollwage, T. Seidl
{"title":"嵌套推土机的距离,以实现有效的集群跟踪","authors":"Hardy Kremer, Stephan Günnemann, Simon Wollwage, T. Seidl","doi":"10.1145/2484838.2484881","DOIUrl":null,"url":null,"abstract":"Cluster tracing algorithms are used to mine temporal evolutions of clusters. Generally, clusters represent groups of objects with similar values. In a temporal context like tracing, similar values correspond to similar behavior in one snapshot in time. Recently, tracing based on object-value-similarity was introduced. In this new paradigm, the decision whether two clusters are considered similar is based on the similarity of the clusters' object values. Existing approaches of this paradigm, however, have a severe limitation. The mapping of clusters between snapshots in time is performed pairwise, i.e. global connections between a temporal snapshot's clusters are ignored; thus, impacts of other clusters that may affect the mapping are not considered and incorrect cluster tracings may be obtained.\n In this vision paper, we present our ongoing work on a novel approach for cluster tracing that applies the object-value-similarity paradigm and is based on the well-known Earth Mover's Distance (EMD). The EMD enables a cluster tracing that uses global mapping: in the mapping process, all clusters of compared snapshots are considered simultaneously. A special property of our approach is that we nest the EMD: we use it as a ground distance for itself to achieve most effective value-based cluster tracing.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"49 1","pages":"34:1-34:4"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nesting the earth mover's distance for effective cluster tracing\",\"authors\":\"Hardy Kremer, Stephan Günnemann, Simon Wollwage, T. Seidl\",\"doi\":\"10.1145/2484838.2484881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster tracing algorithms are used to mine temporal evolutions of clusters. Generally, clusters represent groups of objects with similar values. In a temporal context like tracing, similar values correspond to similar behavior in one snapshot in time. Recently, tracing based on object-value-similarity was introduced. In this new paradigm, the decision whether two clusters are considered similar is based on the similarity of the clusters' object values. Existing approaches of this paradigm, however, have a severe limitation. The mapping of clusters between snapshots in time is performed pairwise, i.e. global connections between a temporal snapshot's clusters are ignored; thus, impacts of other clusters that may affect the mapping are not considered and incorrect cluster tracings may be obtained.\\n In this vision paper, we present our ongoing work on a novel approach for cluster tracing that applies the object-value-similarity paradigm and is based on the well-known Earth Mover's Distance (EMD). The EMD enables a cluster tracing that uses global mapping: in the mapping process, all clusters of compared snapshots are considered simultaneously. A special property of our approach is that we nest the EMD: we use it as a ground distance for itself to achieve most effective value-based cluster tracing.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"49 1\",\"pages\":\"34:1-34:4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2484838.2484881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484838.2484881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

聚类跟踪算法用于挖掘聚类的时间演化。通常,集群表示具有相似值的对象组。在像跟踪这样的临时上下文中,相似的值对应于同一时间快照中的相似行为。近年来,基于对象值相似度的跟踪被引入。在这个新范例中,判断两个聚类是否相似是基于聚类对象值的相似性。然而,这种范式的现有方法有严重的局限性。快照之间的簇映射是成对执行的,即忽略时序快照的簇之间的全局连接;因此,没有考虑可能影响映射的其他聚类的影响,可能会获得不正确的聚类跟踪。在这篇远景论文中,我们介绍了我们正在进行的一种新的聚类跟踪方法,该方法应用对象-值-相似性范式,并基于众所周知的地球移动者距离(EMD)。EMD支持使用全局映射的集群跟踪:在映射过程中,同时考虑比较快照的所有集群。我们的方法的一个特殊属性是我们嵌套了EMD:我们使用它作为自身的地面距离来实现最有效的基于值的聚类跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nesting the earth mover's distance for effective cluster tracing
Cluster tracing algorithms are used to mine temporal evolutions of clusters. Generally, clusters represent groups of objects with similar values. In a temporal context like tracing, similar values correspond to similar behavior in one snapshot in time. Recently, tracing based on object-value-similarity was introduced. In this new paradigm, the decision whether two clusters are considered similar is based on the similarity of the clusters' object values. Existing approaches of this paradigm, however, have a severe limitation. The mapping of clusters between snapshots in time is performed pairwise, i.e. global connections between a temporal snapshot's clusters are ignored; thus, impacts of other clusters that may affect the mapping are not considered and incorrect cluster tracings may be obtained. In this vision paper, we present our ongoing work on a novel approach for cluster tracing that applies the object-value-similarity paradigm and is based on the well-known Earth Mover's Distance (EMD). The EMD enables a cluster tracing that uses global mapping: in the mapping process, all clusters of compared snapshots are considered simultaneously. A special property of our approach is that we nest the EMD: we use it as a ground distance for itself to achieve most effective value-based cluster tracing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1