不同α稳定分布噪声环境下基于线性变换的雷达线性调频信号自适应参数估计算法

Yuhong Zhang;Yixin Zhang
{"title":"不同α稳定分布噪声环境下基于线性变换的雷达线性调频信号自适应参数估计算法","authors":"Yuhong Zhang;Yixin Zhang","doi":"10.1109/JMASS.2023.3304139","DOIUrl":null,"url":null,"abstract":"In order to address the impact of alpha stable distribution noise in the field of parameter estimation of radar linear frequency modulation (LFM) signal, the Lv’s distribution (LVD) class algorithms have been proposed in recent works. However, they just can be applied under the single noisy environment and suffered severe performance degradation at low signal-to-noise ratios (SNRs). In this article, an adaptive nonlinear function LVD (ANF-LVD) algorithm is proposed, different from the traditional LVD algorithms, which makes full use of the geometric information of the LFM signal to adapt to different alpha stable distribution noise environments. Then, based on the geometric information of the LFM signal, an appropriate nonlinear function is selected to suppress the noise under different alpha stable distribution noise environments, which has high parameter estimation accuracy even under an extremely low SNR environment. Simulation experiments show that the proposed algorithm has stronger adaptability and higher parameter estimation accuracy than the traditional LVD algorithm under different alpha stable distribution noise environments.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"4 4","pages":"389-399"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Parameter Estimation Algorithm of Radar Linear Frequency Modulation Signal Based on Nonlinear Transform Under Different Alpha Stable Distribution Noise Environments\",\"authors\":\"Yuhong Zhang;Yixin Zhang\",\"doi\":\"10.1109/JMASS.2023.3304139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to address the impact of alpha stable distribution noise in the field of parameter estimation of radar linear frequency modulation (LFM) signal, the Lv’s distribution (LVD) class algorithms have been proposed in recent works. However, they just can be applied under the single noisy environment and suffered severe performance degradation at low signal-to-noise ratios (SNRs). In this article, an adaptive nonlinear function LVD (ANF-LVD) algorithm is proposed, different from the traditional LVD algorithms, which makes full use of the geometric information of the LFM signal to adapt to different alpha stable distribution noise environments. Then, based on the geometric information of the LFM signal, an appropriate nonlinear function is selected to suppress the noise under different alpha stable distribution noise environments, which has high parameter estimation accuracy even under an extremely low SNR environment. Simulation experiments show that the proposed algorithm has stronger adaptability and higher parameter estimation accuracy than the traditional LVD algorithm under different alpha stable distribution noise environments.\",\"PeriodicalId\":100624,\"journal\":{\"name\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"volume\":\"4 4\",\"pages\":\"389-399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10217123/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10217123/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决α稳定分布噪声对雷达线性调频信号参数估计的影响,近年来提出了Lv分布(LVD)类算法。然而,它们只能在单一噪声环境下使用,在低信噪比(SNRs)下性能会严重下降。本文提出了一种不同于传统LVD算法的自适应非线性函数LVD (ANF-LVD)算法,该算法充分利用LFM信号的几何信息来适应不同的α稳定分布噪声环境。然后,根据LFM信号的几何信息,选择合适的非线性函数来抑制不同α稳定分布噪声环境下的噪声,即使在极低信噪比环境下也具有较高的参数估计精度。仿真实验表明,在不同的α稳定分布噪声环境下,该算法比传统LVD算法具有更强的适应性和更高的参数估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Parameter Estimation Algorithm of Radar Linear Frequency Modulation Signal Based on Nonlinear Transform Under Different Alpha Stable Distribution Noise Environments
In order to address the impact of alpha stable distribution noise in the field of parameter estimation of radar linear frequency modulation (LFM) signal, the Lv’s distribution (LVD) class algorithms have been proposed in recent works. However, they just can be applied under the single noisy environment and suffered severe performance degradation at low signal-to-noise ratios (SNRs). In this article, an adaptive nonlinear function LVD (ANF-LVD) algorithm is proposed, different from the traditional LVD algorithms, which makes full use of the geometric information of the LFM signal to adapt to different alpha stable distribution noise environments. Then, based on the geometric information of the LFM signal, an appropriate nonlinear function is selected to suppress the noise under different alpha stable distribution noise environments, which has high parameter estimation accuracy even under an extremely low SNR environment. Simulation experiments show that the proposed algorithm has stronger adaptability and higher parameter estimation accuracy than the traditional LVD algorithm under different alpha stable distribution noise environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1