{"title":"模型预测控制中牛顿阶跃计算的O(log N)并行算法","authors":"Isak Nielsen, Daniel Axehill","doi":"10.3182/20140824-6-ZA-1003.01577","DOIUrl":null,"url":null,"abstract":"The use of Model Predictive Control is steadily increasing in industry as more complicated problems can be addressed. Due to that online optimization is usually performed, the main bottleneck with Model Predictive Control is the relatively high computational complexity. Hence, much research has been performed to find efficient algorithms that solve the optimization problem. As parallel hardware is becoming more commonly available, the demand of efficient parallel solvers for Model Predictive Control has increased. In this paper, a tailored parallel algorithm that can adopt different levels of parallelism for solving the Newton step is presented. With sufficiently many processing units, it is capable of reducing the computational growth to logarithmic in the prediction horizon. Since the Newton step computation is where most computational effort is spent in both interior-point and active-set solvers, this new algorithm can significantly reduce the computational complexity of highly relevant solvers for Model Predictive Control.","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"21 1","pages":"10505-10511"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An O(log N) Parallel Algorithm for Newton Step Computation in Model Predictive Control\",\"authors\":\"Isak Nielsen, Daniel Axehill\",\"doi\":\"10.3182/20140824-6-ZA-1003.01577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Model Predictive Control is steadily increasing in industry as more complicated problems can be addressed. Due to that online optimization is usually performed, the main bottleneck with Model Predictive Control is the relatively high computational complexity. Hence, much research has been performed to find efficient algorithms that solve the optimization problem. As parallel hardware is becoming more commonly available, the demand of efficient parallel solvers for Model Predictive Control has increased. In this paper, a tailored parallel algorithm that can adopt different levels of parallelism for solving the Newton step is presented. With sufficiently many processing units, it is capable of reducing the computational growth to logarithmic in the prediction horizon. Since the Newton step computation is where most computational effort is spent in both interior-point and active-set solvers, this new algorithm can significantly reduce the computational complexity of highly relevant solvers for Model Predictive Control.\",\"PeriodicalId\":13260,\"journal\":{\"name\":\"IFAC Proceedings Volumes\",\"volume\":\"21 1\",\"pages\":\"10505-10511\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Proceedings Volumes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20140824-6-ZA-1003.01577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20140824-6-ZA-1003.01577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An O(log N) Parallel Algorithm for Newton Step Computation in Model Predictive Control
The use of Model Predictive Control is steadily increasing in industry as more complicated problems can be addressed. Due to that online optimization is usually performed, the main bottleneck with Model Predictive Control is the relatively high computational complexity. Hence, much research has been performed to find efficient algorithms that solve the optimization problem. As parallel hardware is becoming more commonly available, the demand of efficient parallel solvers for Model Predictive Control has increased. In this paper, a tailored parallel algorithm that can adopt different levels of parallelism for solving the Newton step is presented. With sufficiently many processing units, it is capable of reducing the computational growth to logarithmic in the prediction horizon. Since the Newton step computation is where most computational effort is spent in both interior-point and active-set solvers, this new algorithm can significantly reduce the computational complexity of highly relevant solvers for Model Predictive Control.