Suprit Malagi, Rajesh Anawal, S. V. Gorabal, M. Doddamani
{"title":"注射成型核桃壳/高密度聚乙烯复合材料的弯曲和准静态压缩性能","authors":"Suprit Malagi, Rajesh Anawal, S. V. Gorabal, M. Doddamani","doi":"10.26480/jmerd.05.2019.93.96","DOIUrl":null,"url":null,"abstract":"The present study focuses on flexural and quasi-static compression behavior of high-density polyethylene (HDPE)/walnut shell (WS) composites. Flexural and quasi-static compression specimens by 20, 40 and 60 wt. % of WS are synthesized by polymer injection (PI) molding. The flexural modulus and strength are observed to increase with increase in the wt.% of WS. Compared to pure HDPE, the flexural modulus and strength increased in the range of 205-403% and 49-58% respectively. Further quasi-static compression tests are carried at 0.001, 0.01, 0.1 s-1 strain rates. Compressive modulus of HDPE/WS specimens is lower as compared to pure HDPE samples for all the strain rates. Compressive yield strength of HDPE/WS specimens shows increasing trend with increase in the strain rates. Scanning electron microscopy (SEM) is employed to study the fractography of the samples.","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FLEXURAL AND QUASI-STATIC COMPRESSIVE BEHAVIOR OF INJECTION-MOLDED WALNUT SHELL (WS)/HDPE COMPOSITES\",\"authors\":\"Suprit Malagi, Rajesh Anawal, S. V. Gorabal, M. Doddamani\",\"doi\":\"10.26480/jmerd.05.2019.93.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study focuses on flexural and quasi-static compression behavior of high-density polyethylene (HDPE)/walnut shell (WS) composites. Flexural and quasi-static compression specimens by 20, 40 and 60 wt. % of WS are synthesized by polymer injection (PI) molding. The flexural modulus and strength are observed to increase with increase in the wt.% of WS. Compared to pure HDPE, the flexural modulus and strength increased in the range of 205-403% and 49-58% respectively. Further quasi-static compression tests are carried at 0.001, 0.01, 0.1 s-1 strain rates. Compressive modulus of HDPE/WS specimens is lower as compared to pure HDPE samples for all the strain rates. Compressive yield strength of HDPE/WS specimens shows increasing trend with increase in the strain rates. Scanning electron microscopy (SEM) is employed to study the fractography of the samples.\",\"PeriodicalId\":16153,\"journal\":{\"name\":\"Journal of Mechanical Engineering Research and Developments\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering Research and Developments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26480/jmerd.05.2019.93.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/jmerd.05.2019.93.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
FLEXURAL AND QUASI-STATIC COMPRESSIVE BEHAVIOR OF INJECTION-MOLDED WALNUT SHELL (WS)/HDPE COMPOSITES
The present study focuses on flexural and quasi-static compression behavior of high-density polyethylene (HDPE)/walnut shell (WS) composites. Flexural and quasi-static compression specimens by 20, 40 and 60 wt. % of WS are synthesized by polymer injection (PI) molding. The flexural modulus and strength are observed to increase with increase in the wt.% of WS. Compared to pure HDPE, the flexural modulus and strength increased in the range of 205-403% and 49-58% respectively. Further quasi-static compression tests are carried at 0.001, 0.01, 0.1 s-1 strain rates. Compressive modulus of HDPE/WS specimens is lower as compared to pure HDPE samples for all the strain rates. Compressive yield strength of HDPE/WS specimens shows increasing trend with increase in the strain rates. Scanning electron microscopy (SEM) is employed to study the fractography of the samples.
期刊介绍:
The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.