重复事件的边际均值的有效估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-09-21 DOI:10.1111/rssc.12586
Giuliana Cortese, Thomas H. Scheike
{"title":"重复事件的边际均值的有效估计","authors":"Giuliana Cortese,&nbsp;Thomas H. Scheike","doi":"10.1111/rssc.12586","DOIUrl":null,"url":null,"abstract":"<p>Recurrent events are often encountered in clinical and epidemiological studies where a terminal event is also observed. With recurrent events data it is of great interest to estimate the marginal mean of the cumulative number of recurrent events experienced prior to the terminal event. The standard nonparametric estimator was suggested in Cook and Lawless and further developed in Ghosh and Lin. We here investigate the efficiency of this estimator that, surprisingly, has not been studied before. We rewrite the standard estimator as an inverse probability of censoring weighted estimator. From this representation we derive an efficient augmented estimator using efficient estimation theory for right-censored data. We show that the standard estimator is efficient in settings with no heterogeneity. In other settings with different sources of heterogeneity, we show theoretically and by simulations that the efficiency can be greatly improved when an efficient augmented estimator based on dynamic predictions is employed, at no extra cost to robustness. The estimators are applied and compared to study the mean number of catheter-related bloodstream infections in heterogeneous patients with chronic intestinal failure who can possibly die, and the efficiency gain is highlighted in the resulting point-wise confidence intervals.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12586","citationCount":"0","resultStr":"{\"title\":\"Efficient estimation of the marginal mean of recurrent events\",\"authors\":\"Giuliana Cortese,&nbsp;Thomas H. Scheike\",\"doi\":\"10.1111/rssc.12586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recurrent events are often encountered in clinical and epidemiological studies where a terminal event is also observed. With recurrent events data it is of great interest to estimate the marginal mean of the cumulative number of recurrent events experienced prior to the terminal event. The standard nonparametric estimator was suggested in Cook and Lawless and further developed in Ghosh and Lin. We here investigate the efficiency of this estimator that, surprisingly, has not been studied before. We rewrite the standard estimator as an inverse probability of censoring weighted estimator. From this representation we derive an efficient augmented estimator using efficient estimation theory for right-censored data. We show that the standard estimator is efficient in settings with no heterogeneity. In other settings with different sources of heterogeneity, we show theoretically and by simulations that the efficiency can be greatly improved when an efficient augmented estimator based on dynamic predictions is employed, at no extra cost to robustness. The estimators are applied and compared to study the mean number of catheter-related bloodstream infections in heterogeneous patients with chronic intestinal failure who can possibly die, and the efficiency gain is highlighted in the resulting point-wise confidence intervals.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12586\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12586\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12586","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在临床和流行病学研究中经常遇到复发事件,在这些研究中也观察到终末事件。有了反复事件的数据,估计在结束事件之前经历的反复事件累积次数的边际平均值是非常有趣的。标准非参数估计量由Cook和Lawless提出,并由Ghosh和Lin进一步发展。我们在这里研究这个估计器的效率,令人惊讶的是,以前没有研究过。我们将标准估计量改写为一个逆概率的滤波加权估计量。在此基础上,利用有效估计理论导出了右截尾数据的有效增广估计量。我们证明了标准估计器在没有异质性的情况下是有效的。在具有不同异质性来源的其他设置中,我们从理论上和模拟中表明,当采用基于动态预测的有效增强估计器时,效率可以大大提高,而不会对鲁棒性造成额外损失。我们应用并比较了这些估计值来研究可能死亡的异质性慢性肠衰竭患者中导管相关血流感染的平均数量,并在所得的逐点置信区间中强调了效率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient estimation of the marginal mean of recurrent events

Recurrent events are often encountered in clinical and epidemiological studies where a terminal event is also observed. With recurrent events data it is of great interest to estimate the marginal mean of the cumulative number of recurrent events experienced prior to the terminal event. The standard nonparametric estimator was suggested in Cook and Lawless and further developed in Ghosh and Lin. We here investigate the efficiency of this estimator that, surprisingly, has not been studied before. We rewrite the standard estimator as an inverse probability of censoring weighted estimator. From this representation we derive an efficient augmented estimator using efficient estimation theory for right-censored data. We show that the standard estimator is efficient in settings with no heterogeneity. In other settings with different sources of heterogeneity, we show theoretically and by simulations that the efficiency can be greatly improved when an efficient augmented estimator based on dynamic predictions is employed, at no extra cost to robustness. The estimators are applied and compared to study the mean number of catheter-related bloodstream infections in heterogeneous patients with chronic intestinal failure who can possibly die, and the efficiency gain is highlighted in the resulting point-wise confidence intervals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1