Valentin D. Picasso, Marisol Berti, Kim Cassida, Sarah Collier, Di Fang, Ann Finan, Margaret Krome, David Hannaway, William Lamp, Andrew W. Stevens, Carol Williams
{"title":"需要多样化的多年生循环牧草系统来增强农业景观的恢复力、生态系统服务和社会经济效益","authors":"Valentin D. Picasso, Marisol Berti, Kim Cassida, Sarah Collier, Di Fang, Ann Finan, Margaret Krome, David Hannaway, William Lamp, Andrew W. Stevens, Carol Williams","doi":"10.1002/glr2.12020","DOIUrl":null,"url":null,"abstract":"<p>Prevailing agricultural systems dominated by annual crop monocultures, and the landscapes that contain them, lack resilience and multifunctionality. They are vulnerable to extreme weather events, contribute to degradation of soil, water, and air quality, reduce biodiversity, and negatively impact human health, social engagement, and equity. To achieve greater resilience, stability, and multiple ecosystem services therein, and to improve socioeconomic outcomes, we propose a practical framework to gain multifunctionality at multiple scales. This framework includes forages within agroecosystems that have the essential structural features of diversity, perenniality, and circularity. These three structural features are associated with increased resilience, stability, and provision of several ecosystem services, which in turn improve human health and socioeconomic outcomes. This framework improves understanding of, and access to, tools and materials for promoting the adoption of diverse circular agroecosystems with perennial forages. Application of this framework can result in land transformations that solve sustainability challenges in agriculture if policy, economic, and social barriers can be overcome by a transdisciplinary process of equitable knowledge production.</p>","PeriodicalId":100593,"journal":{"name":"Grassland Research","volume":"1 2","pages":"123-130"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glr2.12020","citationCount":"3","resultStr":"{\"title\":\"Diverse perennial circular forage systems are needed to foster resilience, ecosystem services, and socioeconomic benefits in agricultural landscapes\",\"authors\":\"Valentin D. Picasso, Marisol Berti, Kim Cassida, Sarah Collier, Di Fang, Ann Finan, Margaret Krome, David Hannaway, William Lamp, Andrew W. Stevens, Carol Williams\",\"doi\":\"10.1002/glr2.12020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prevailing agricultural systems dominated by annual crop monocultures, and the landscapes that contain them, lack resilience and multifunctionality. They are vulnerable to extreme weather events, contribute to degradation of soil, water, and air quality, reduce biodiversity, and negatively impact human health, social engagement, and equity. To achieve greater resilience, stability, and multiple ecosystem services therein, and to improve socioeconomic outcomes, we propose a practical framework to gain multifunctionality at multiple scales. This framework includes forages within agroecosystems that have the essential structural features of diversity, perenniality, and circularity. These three structural features are associated with increased resilience, stability, and provision of several ecosystem services, which in turn improve human health and socioeconomic outcomes. This framework improves understanding of, and access to, tools and materials for promoting the adoption of diverse circular agroecosystems with perennial forages. Application of this framework can result in land transformations that solve sustainability challenges in agriculture if policy, economic, and social barriers can be overcome by a transdisciplinary process of equitable knowledge production.</p>\",\"PeriodicalId\":100593,\"journal\":{\"name\":\"Grassland Research\",\"volume\":\"1 2\",\"pages\":\"123-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glr2.12020\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grassland Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/glr2.12020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grassland Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glr2.12020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diverse perennial circular forage systems are needed to foster resilience, ecosystem services, and socioeconomic benefits in agricultural landscapes
Prevailing agricultural systems dominated by annual crop monocultures, and the landscapes that contain them, lack resilience and multifunctionality. They are vulnerable to extreme weather events, contribute to degradation of soil, water, and air quality, reduce biodiversity, and negatively impact human health, social engagement, and equity. To achieve greater resilience, stability, and multiple ecosystem services therein, and to improve socioeconomic outcomes, we propose a practical framework to gain multifunctionality at multiple scales. This framework includes forages within agroecosystems that have the essential structural features of diversity, perenniality, and circularity. These three structural features are associated with increased resilience, stability, and provision of several ecosystem services, which in turn improve human health and socioeconomic outcomes. This framework improves understanding of, and access to, tools and materials for promoting the adoption of diverse circular agroecosystems with perennial forages. Application of this framework can result in land transformations that solve sustainability challenges in agriculture if policy, economic, and social barriers can be overcome by a transdisciplinary process of equitable knowledge production.