{"title":"从微流控装置中流动的视频序列中对红细胞跟踪的策划数据集","authors":"I. Cimrák, P. Tarábek, Frantisek Kajánek","doi":"10.3390/data8060106","DOIUrl":null,"url":null,"abstract":"This work presents a dataset comprising images, annotations, and velocity fields for benchmarking cell detection and cell tracking algorithms. The dataset includes two video sequences captured during laboratory experiments, showcasing the flow of red blood cells (RBC) in microfluidic channels. From the first video 300 frames and from the second video 150 frames are annotated with bounding boxes around the cells, as well as tracks depicting the movement of individual cells throughout the video. The dataset encompasses approximately 20,000 bounding boxes and 350 tracks. Additionally, computational fluid dynamics simulations were utilized to generate 2D velocity fields representing the flow within the channels. These velocity fields are included in the dataset. The velocity field has been employed to improve cell tracking by predicting the positions of cells across frames. The paper also provides a comprehensive discussion on the utilization of the flow matrix in the tracking steps.","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"48 1","pages":"106"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curated Dataset for Red Blood Cell Tracking from Video Sequences of Flow in Microfluidic Devices\",\"authors\":\"I. Cimrák, P. Tarábek, Frantisek Kajánek\",\"doi\":\"10.3390/data8060106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a dataset comprising images, annotations, and velocity fields for benchmarking cell detection and cell tracking algorithms. The dataset includes two video sequences captured during laboratory experiments, showcasing the flow of red blood cells (RBC) in microfluidic channels. From the first video 300 frames and from the second video 150 frames are annotated with bounding boxes around the cells, as well as tracks depicting the movement of individual cells throughout the video. The dataset encompasses approximately 20,000 bounding boxes and 350 tracks. Additionally, computational fluid dynamics simulations were utilized to generate 2D velocity fields representing the flow within the channels. These velocity fields are included in the dataset. The velocity field has been employed to improve cell tracking by predicting the positions of cells across frames. The paper also provides a comprehensive discussion on the utilization of the flow matrix in the tracking steps.\",\"PeriodicalId\":55580,\"journal\":{\"name\":\"Atomic Data and Nuclear Data Tables\",\"volume\":\"48 1\",\"pages\":\"106\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Data and Nuclear Data Tables\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/data8060106\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Data and Nuclear Data Tables","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/data8060106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Curated Dataset for Red Blood Cell Tracking from Video Sequences of Flow in Microfluidic Devices
This work presents a dataset comprising images, annotations, and velocity fields for benchmarking cell detection and cell tracking algorithms. The dataset includes two video sequences captured during laboratory experiments, showcasing the flow of red blood cells (RBC) in microfluidic channels. From the first video 300 frames and from the second video 150 frames are annotated with bounding boxes around the cells, as well as tracks depicting the movement of individual cells throughout the video. The dataset encompasses approximately 20,000 bounding boxes and 350 tracks. Additionally, computational fluid dynamics simulations were utilized to generate 2D velocity fields representing the flow within the channels. These velocity fields are included in the dataset. The velocity field has been employed to improve cell tracking by predicting the positions of cells across frames. The paper also provides a comprehensive discussion on the utilization of the flow matrix in the tracking steps.
期刊介绍:
Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive ... click here for full Aims & Scope
Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive and comprehensive compilations of experimental and theoretical results are featured.