首页 > 最新文献

Atomic Data and Nuclear Data Tables最新文献

英文 中文
Photonuclear partial reaction cross sections: Systematic uncertainties and reliability 光核部分反应截面:系统的不确定性和可靠性
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-10-08 DOI: 10.1016/j.adt.2024.101697
V.V. Varlamov, A.I. Davydov, V.N. Orlin
The well-known significant systematic disagreements between cross sections of partial photoneutron reactions (γ,1n) and (γ, 2n) obtained in various experiments majority of which have been carried out at Livermore (USA) and Saclay (France) were analyzed using the objective physical criteria of data reliability. It was found that experimental data for more than 50 nuclei from 51V to 209Bi in general do not meet those criteria and therefore are more or less unreliable. The experimental-theoretical method based on the Combined PhotoNuclear Reaction Model (CPNRM) was used to evaluate partial reaction cross sections that meet the reliability criteria. It was shown using the analysis in detail of differences between evaluated and experimental cross sections that the major sources of large systematic uncertainties in obtained cross sections are certain shortcomings of experimental neutron multiplicity sorting method have been used for indirect separation of partial reactions. It was shown that the newly evaluated cross sections of partial photoneutron reactions differ significantly (at least noticeably) from the ones obtained using the method of neutron multiplicity sorting but agree with experimental data obtained by alternative methods used for reliable direct separation of partial reactions. The consolidated review of many problems with partial photoneutron reaction experimental data reliability and some ways to solve ones are presented.
在美国利弗莫尔(Livermore)和法国萨克莱(Saclay)进行的各种实验中获得的部分光子中子反应(γ,1n)和(γ, 2n)截面之间众所周知的显著系统差异,使用数据可靠性的客观物理标准进行了分析。结果发现,从51V到209Bi的50多个原子核的实验数据一般不符合这些标准,因此或多或少不可靠。采用基于组合光核反应模型(CPNRM)的实验-理论方法对满足可靠性标准的部分反应截面进行了评估。通过对计算截面与实验截面差异的详细分析表明,实验中子多重分选法用于间接分离部分反应的某些缺点是所得截面系统不确定度较大的主要来源。结果表明,新计算的部分光子中子反应截面与用中子多重分选方法得到的截面有显著差异,但与用可靠的直接分离部分反应的替代方法得到的实验数据一致。本文综合评述了部分光子中子反应实验数据可靠性的许多问题,并提出了解决这些问题的方法。
{"title":"Photonuclear partial reaction cross sections: Systematic uncertainties and reliability","authors":"V.V. Varlamov,&nbsp;A.I. Davydov,&nbsp;V.N. Orlin","doi":"10.1016/j.adt.2024.101697","DOIUrl":"10.1016/j.adt.2024.101697","url":null,"abstract":"<div><div>The well-known significant systematic disagreements between cross sections of partial photoneutron reactions <span><math><mrow><mo>(</mo><mrow><mi>γ</mi><mo>,</mo><mn>1</mn><mi>n</mi></mrow><mo>)</mo></mrow></math></span> and (<em>γ</em>, 2<em>n</em>) obtained in various experiments majority of which have been carried out at Livermore (USA) and Saclay (France) were analyzed using the objective physical criteria of data reliability. It was found that experimental data for more than 50 nuclei from <sup>51</sup>V to <sup>209</sup>Bi in general do not meet those criteria and therefore are more or less unreliable. The experimental-theoretical method based on the Combined PhotoNuclear Reaction Model (CPNRM) was used to evaluate partial reaction cross sections that meet the reliability criteria. It was shown using the analysis in detail of differences between evaluated and experimental cross sections that the major sources of large systematic uncertainties in obtained cross sections are certain shortcomings of experimental neutron multiplicity sorting method have been used for indirect separation of partial reactions. It was shown that the newly evaluated cross sections of partial photoneutron reactions differ significantly (at least noticeably) from the ones obtained using the method of neutron multiplicity sorting but agree with experimental data obtained by alternative methods used for reliable direct separation of partial reactions. The consolidated review of many problems with partial photoneutron reaction experimental data reliability and some ways to solve ones are presented.</div></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"161 ","pages":"Article 101697"},"PeriodicalIF":2.7,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical level energies and transition data for 4p64d7, 4p54d8 and 4p64d64f configurations of W31+ ion W31+离子4p64d7、4p54d8和4p64d64f构型的理论能级和跃迁数据
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-10-04 DOI: 10.1016/j.adt.2024.101693
R. Karpuškienė, R. Kisielius
The ab initio quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions has been used to determine transition data for the Tc-like tungsten ion W31+. This is the final paper of our studies examining spectroscopic properties of the tungsten ions with open 4d shell in the ground state. The configuration interaction method has been utilized to include electron correlation effects. The relativistic effects have been taken into account in the Breit–Pauli approximation. Level energies, their radiative lifetimes τ, and Landé g-factors have been determined for the ground configuration 4p64d7 and two excited configurations, 4p54d8 and 4p64d64f. The radiative transition wavelengths λ and emission transition probabilities A for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the fine-structure levels of these configurations have been computed and analyzed. The uncertainties of produced spectroscopic parameters have been evaluated.
专门用于计算高电荷离子光谱参数的从头算准相对论方法已被用于确定类tc钨离子W31+的跃迁数据。这是我们在基态下研究开壳钨离子光谱特性的最后一篇论文。采用组态相互作用方法来考虑电子相关效应。在Breit-Pauli近似中考虑了相对论效应。已经确定了地面构型4p64d7和两个激发态4p54d8和4p64d64f的能级能、辐射寿命τ和land g因子。计算并分析了电偶极子、电四极子、电八极子、磁偶极子和磁四极子的辐射跃迁波长λ和发射跃迁概率A。对所得光谱参数的不确定度进行了评定。
{"title":"Theoretical level energies and transition data for 4p64d7, 4p54d8 and 4p64d64f configurations of W31+ ion","authors":"R. Karpuškienė,&nbsp;R. Kisielius","doi":"10.1016/j.adt.2024.101693","DOIUrl":"10.1016/j.adt.2024.101693","url":null,"abstract":"<div><div>The <em>ab initio</em> quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions has been used to determine transition data for the Tc-like tungsten ion W<span><math><msup><mrow></mrow><mrow><mn>31</mn><mo>+</mo></mrow></msup></math></span>. This is the final paper of our studies examining spectroscopic properties of the tungsten ions with open 4d shell in the ground state. The configuration interaction method has been utilized to include electron correlation effects. The relativistic effects have been taken into account in the Breit–Pauli approximation. Level energies, their radiative lifetimes <span><math><mi>τ</mi></math></span>, and Landé <span><math><mi>g</mi></math></span>-factors have been determined for the ground configuration 4p<span><math><msup><mrow></mrow><mrow><mn>6</mn></mrow></msup></math></span>4d<span><math><msup><mrow></mrow><mrow><mn>7</mn></mrow></msup></math></span> and two excited configurations, 4p<span><math><msup><mrow></mrow><mrow><mn>5</mn></mrow></msup></math></span>4d<sup>8</sup> and 4p<sup>6</sup>4d<sup>6</sup>4f. The radiative transition wavelengths <span><math><mi>λ</mi></math></span> and emission transition probabilities <span><math><mi>A</mi></math></span> for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the fine-structure levels of these configurations have been computed and analyzed. The uncertainties of produced spectroscopic parameters have been evaluated.</div></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"161 ","pages":"Article 101693"},"PeriodicalIF":2.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ADNDT's enduring distinct role in the scientific publishing ecosystem ADNDT在科学出版生态系统中持久的独特作用
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-10-03 DOI: 10.1016/j.adt.2024.101695
David R. Schultz , Boris Pritychenko
{"title":"ADNDT's enduring distinct role in the scientific publishing ecosystem","authors":"David R. Schultz ,&nbsp;Boris Pritychenko","doi":"10.1016/j.adt.2024.101695","DOIUrl":"10.1016/j.adt.2024.101695","url":null,"abstract":"","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"161 ","pages":"Article 101695"},"PeriodicalIF":2.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive review of 2β decay half-lives 2β衰变半衰期的综合评述
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-10-02 DOI: 10.1016/j.adt.2024.101694
B. Pritychenko , V.I. Tretyak
The double-beta (2β)-decay is the rarest nuclear physics process, and its experimental half-lives (T1/2) exceed the age of the Universe from nine to fourteen orders of magnitude. Double-beta decay was observed, and its half-life was measured in 14 parent nuclei using direct, radiochemical, and geochemical methods. The decay observables are analyzed using the Evaluated Nuclear Structure Data File (ENSDF) procedures, and the recommended T1/2 were deduced. Using the calculated values of phase factors, the effective nuclear matrix elements were extracted and compared with available data. Thousands of theoretical and experimental works have been dedicated to these topics in the last 85 years, and we present two data sets of recommended values to encapsulate the results.
双β (2β)衰变是最罕见的核物理过程,其实验半衰期(T1/2)超过宇宙年龄9到14个数量级。用直接、放射化学和地球化学方法测量了14个母核的双β衰变和半衰期。利用评估核结构数据文件(ENSDF)程序对衰变观测值进行了分析,并推导出推荐的T1/2。利用相因子的计算值,提取有效核矩阵元素,并与现有数据进行比较。在过去的85年里,成千上万的理论和实验工作致力于这些主题,我们提出了两组推荐值的数据集来概括结果。
{"title":"Comprehensive review of 2β decay half-lives","authors":"B. Pritychenko ,&nbsp;V.I. Tretyak","doi":"10.1016/j.adt.2024.101694","DOIUrl":"10.1016/j.adt.2024.101694","url":null,"abstract":"<div><div>The double-beta (2<span><math><mi>β</mi></math></span>)-decay is the rarest nuclear physics process, and its experimental half-lives (T<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span>) exceed the age of the Universe from nine to fourteen orders of magnitude. Double-beta decay was observed, and its half-life was measured in 14 parent nuclei using direct, radiochemical, and geochemical methods. The decay observables are analyzed using the Evaluated Nuclear Structure Data File (ENSDF) procedures, and the recommended T<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> were deduced. Using the calculated values of phase factors, the effective nuclear matrix elements were extracted and compared with available data. Thousands of theoretical and experimental works have been dedicated to these topics in the last 85 years, and we present two data sets of recommended values to encapsulate the results.</div></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"161 ","pages":"Article 101694"},"PeriodicalIF":2.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mean Excitation Energies of all ionization stages of all atoms with 1≤Z≤86 1≤Z≤86的所有原子各电离阶段的平均激发能
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-10-02 DOI: 10.1016/j.adt.2024.101696
J. Walkowiak , J. Bielecki , J. Bieroń , A. Jardin , Y. Savoye-Peysson , D. Mazon , K. Król , D. Dworak , M. Scholz
The presented work provides values of Mean Excitation Energy (MEE) for all atoms and their ions with atomic numbers 1Z86. To fill in the gaps in the available data, we propose an approximate atomic model for ions of high-Z elements, that uses a semi-empirical formula based on the Local Plasma Approximation (LPA). Despite the fact that the LPA, in its original form, poorly predicts MEE for high ionization states, a relatively simple modification utilizing a fit function can amend this shortcoming. We assess the importance of relativistic effects for the MEE for highly ionized atoms and compare the proposed formula to other approximations available for high-Z elements. We estimate the uncertainty of the presented data to be less than 40% in absolute value for the worst cases and less than 20% for most ions. This corresponds to an uncertainty of the order of few percent for the logarithm of MEE, which is the value of interest in the case of Bethe’s theory of stopping power.
本文给出了原子序数为1≤Z≤86的所有原子及其离子的平均激发能(MEE)。为了填补现有数据的空白,我们提出了一个高z元素离子的近似原子模型,该模型使用基于局部等离子体近似(LPA)的半经验公式。尽管LPA在其原始形式下很难预测高电离态的MEE,但利用拟合函数进行相对简单的修改可以弥补这一缺点。我们评估了相对论效应对高电离原子MEE的重要性,并将所提出的公式与其他高z元素的近似进行了比较。我们估计,在最坏情况下,所提供数据的不确定性绝对值小于40%,对于大多数离子,不确定性绝对值小于20%。这对应于MEE的对数的几个百分点的不确定性,这是贝特停止力理论中感兴趣的值。
{"title":"Mean Excitation Energies of all ionization stages of all atoms with 1≤Z≤86","authors":"J. Walkowiak ,&nbsp;J. Bielecki ,&nbsp;J. Bieroń ,&nbsp;A. Jardin ,&nbsp;Y. Savoye-Peysson ,&nbsp;D. Mazon ,&nbsp;K. Król ,&nbsp;D. Dworak ,&nbsp;M. Scholz","doi":"10.1016/j.adt.2024.101696","DOIUrl":"10.1016/j.adt.2024.101696","url":null,"abstract":"<div><div>The presented work provides values of Mean Excitation Energy (MEE) for all atoms and their ions with atomic numbers <span><math><mrow><mn>1</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>86</mn></mrow></math></span>. To fill in the gaps in the available data, we propose an approximate atomic model for ions of high-Z elements, that uses a semi-empirical formula based on the Local Plasma Approximation (LPA). Despite the fact that the LPA, in its original form, poorly predicts MEE for high ionization states, a relatively simple modification utilizing a fit function can amend this shortcoming. We assess the importance of relativistic effects for the MEE for highly ionized atoms and compare the proposed formula to other approximations available for high-Z elements. We estimate the uncertainty of the presented data to be less than 40% in absolute value for the worst cases and less than 20% for most ions. This corresponds to an uncertainty of the order of few percent for the logarithm of MEE, which is the value of interest in the case of Bethe’s theory of stopping power.</div></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"161 ","pages":"Article 101696"},"PeriodicalIF":2.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collective model description of parity-doublet bands in odd mass nuclei 奇质量原子核中奇偶重态带的集体模型描述
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-09-26 DOI: 10.1016/j.adt.2024.101692
R. Budaca
The yrast parity doublet rotational bands in odd medium mass and heavy nuclei are described by a quadrupole–octupole axially symmetric collective model within the strong coupling assumption regarding the odd nucleon. Energy levels of the same spin and opposite parity are interpreted as symmetric and antisymmetric quantum states of the quadrupole–octupole shape fluctuation. The energy spectrum and the associated electromagnetic transitions of the parity doublet bands observed in 21 selected nuclei, are reproduced with a very good accuracy. Predictions are performed for energies of unobserved states and electromagnetic properties. The model parameters are used to establish the static or dynamic nature of the octupole correlations in the ground state and their evolution with spin. A general systematization of the octupole effects as a function of nucleon numbers is realized in conjunction with results on even–even nuclei.
在奇核强耦合假设下,用四极-八极轴对称集体模型描述了奇中质和重核的奇宇称偶重旋转带。相同自旋和相反宇称的能级被解释为四极-八极形状涨落的对称和反对称量子态。在21个选定的原子核中观测到的宇称重态带的能谱和相关的电磁跃迁,得到了很好的再现。对未观测态和电磁特性的能量进行了预测。模型参数用于建立基态八极相关的静态或动态性质及其随自旋的演化。结合偶偶核的结果,实现了八极子效应作为核子数函数的一般系统化。
{"title":"Collective model description of parity-doublet bands in odd mass nuclei","authors":"R. Budaca","doi":"10.1016/j.adt.2024.101692","DOIUrl":"10.1016/j.adt.2024.101692","url":null,"abstract":"<div><div>The yrast parity doublet rotational bands in odd medium mass and heavy nuclei are described by a quadrupole–octupole axially symmetric collective model within the strong coupling assumption regarding the odd nucleon. Energy levels of the same spin and opposite parity are interpreted as symmetric and antisymmetric quantum states of the quadrupole–octupole shape fluctuation. The energy spectrum and the associated electromagnetic transitions of the parity doublet bands observed in 21 selected nuclei, are reproduced with a very good accuracy. Predictions are performed for energies of unobserved states and electromagnetic properties. The model parameters are used to establish the static or dynamic nature of the octupole correlations in the ground state and their evolution with spin. A general systematization of the octupole effects as a function of nucleon numbers is realized in conjunction with results on even–even nuclei.</div></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"161 ","pages":"Article 101692"},"PeriodicalIF":2.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-electron capture from helium targets by heavy nuclei of charges 1–7 电荷数为 1-7 的重核从氦靶俘获单电子
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-08-31 DOI: 10.1016/j.adt.2024.101685
I. Mančev , N. Milojević , D. Delibašić , M. Milenković , Dž. Belkić
<div><p>Single-electron capture by multiply charged nuclei from helium atoms is studied by means of the prior form of the four-body boundary-corrected continuum intermediate state (BCIS-4B) method. Computations concern total cross sections for the state-selective (<span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mi>l</mi><mi>m</mi></mrow></msub></math></span>) and state-summed (<span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi><mi>l</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>Σ</mi></mrow></msub></mrow></math></span>) populations at 20–3000 keV/amu. These refer to the collisions of the type <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>+</mo></mrow></msup><mo>+</mo><mi>He</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>→</mo><msup><mrow><mi>A</mi></mrow><mrow><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>n</mi><mi>l</mi><mi>m</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>He</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>1</mn><mi>s</mi><mo>)</mo></mrow></mrow></math></span>. Here, the projectile <span><math><msup><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>+</mo></mrow></msup></math></span> covers the ions <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>He</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>Li</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>Be</mi></mrow><mrow><mn>4</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>B</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>7</mn><mo>+</mo></mrow></msup></math></span>. The reported findings are tabulated for each value of the quantum numbers <span><math><mrow><mo>{</mo><mi>n</mi><mo>,</mo><mi>l</mi><mo>,</mo><mi>m</mi><mo>}</mo></mrow></math></span>. The maximum values <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> of the principal quantum number <span><math><mi>n</mi></math></span> are 4 (<span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>He</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>Li</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span>), 5 (<span><math><msup><mrow><mi>Be</mi></mrow><mrow><mn>4</mn><mo>+</mo></mrow></msup></math></span>), 6 (<span><math><msup><mrow><
通过四体边界校正连续中间态(BCIS-4B)方法的先验形式,研究了氦原子多电荷核的单电子俘获。计算涉及 20-3000 keV/amu 下的态选择群(Qnlm)和态总和群(Qnl,Qn,QΣ)的总截面。这些是指 AZP++He(1s2)→A(ZP-1)+(nlm)+He+(1s) 类型的碰撞。这里,射弹 AZP+ 包括 H+、He2+、Li3+、Be4+、B5+、C6+ 和 N7+ 离子。报告的研究结果按量子数 {n,l,m} 的每个值列表。主量子数 n 的最大值 nmax 分别为 4(H+、He2+、Li3+)、5(Be4+)、6(B5+)和 7(C6+、N7+)。通过选择一个适当的截断值 nmax,并随后应用奥本海默 n-3 缩放规则,将来自 n>nmax 的贡献大致包括在内,从而截断了所有 n 状态的总和。所得到的 QΣ 和某些最终 n 特定态的结果很好地描述了相应的实验数据。这使得 BCIS-4B 方法的先验形式有资格进一步应用于多个跨学科领域,包括天体物理学、热核聚变、等离子体物理学和医学中的离子疗法。
{"title":"Single-electron capture from helium targets by heavy nuclei of charges 1–7","authors":"I. Mančev ,&nbsp;N. Milojević ,&nbsp;D. Delibašić ,&nbsp;M. Milenković ,&nbsp;Dž. Belkić","doi":"10.1016/j.adt.2024.101685","DOIUrl":"10.1016/j.adt.2024.101685","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Single-electron capture by multiply charged nuclei from helium atoms is studied by means of the prior form of the four-body boundary-corrected continuum intermediate state (BCIS-4B) method. Computations concern total cross sections for the state-selective (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) and state-summed (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) populations at 20–3000 keV/amu. These refer to the collisions of the type &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;He&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;He&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Here, the projectile &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; covers the ions &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;He&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Li&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Be&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. The reported findings are tabulated for each value of the quantum numbers &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The maximum values &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;max&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of the principal quantum number &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are 4 (&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;He&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Li&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;), 5 (&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Be&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;), 6 (&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"160 ","pages":"Article 101685"},"PeriodicalIF":2.7,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alpha-decay half-lives and alpha-capture cross-sections 衰变半衰期和俘获截面
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-08-30 DOI: 10.1016/j.adt.2024.101684
V.Yu. Denisov
The same alpha-nucleus interaction describes the alpha-decay and alpha-capture reactions in the Unified Model for Alpha-Decay and Alpha-Capture (UMADAC). The data for the ground-state-to-ground-state alpha-transition half-lives in 420 nuclei, the half-lives for alpha-transition from the ground state to the first excited 2+ state in 74 even–even nuclei, and the alpha-capture cross sections of 20 spherical and deformed nuclei are used for defining the parameters of the UMADAC. The pointed data are well described in the framework of the UMADAC utilizing the obtained parameters. The ground-state-to-ground-state alpha-transition half-lives in 3802 nuclei with the proton Z and nucleon A numbers in the ranges 50 Z 126 and 97 A 340 are calculated in the UMADAC and presented in the Table 1. The quadrupole and hexadecapole deformations of the daughter nucleus are considered in the UMADAC. The minimal values of the orbital momenta of the alpha-transition between the ground states are found using available experimental and theoretical data for the ground state spin and parity values of nuclei. The half-lives for 223 alpha-transitions from the ground-state of the parent even–even nuclei to the lowest 2+ state of the daughter nuclei with the proton Z and nucleon A numbers in the ranges 52 Z 102 and 108 A 254 are obtained in the UMADAC and given in the Table 2.
在α衰变和α捕获统一模型(UMADAC)中,相同的α -核相互作用描述了α衰变和α捕获反应。利用420个原子核的基态到基态α跃迁半衰期数据、74个偶偶核从基态到第一激发态α跃迁半衰期数据以及20个球形和变形原子核的α俘获截面数据来确定UMADAC的参数。利用所获得的参数,在UMADAC框架中很好地描述了点数据。质子Z和核子A在50≤Z≤126和97≤A≤340范围内的3802原子核的基态到基态α跃迁半衰期在UMADAC中计算,如表1所示。在UMADAC中考虑了子核的四极和六极变形。利用现有的基态自旋和原子核宇称值的实验和理论数据,找到了基态间α跃迁轨道动量的最小值。从母偶核基态到子核最低2+态的223个α跃迁的半衰期,质子Z和核子A在52≤Z≤102和108≤A≤254的范围内,在UMADAC中得到,并给出了表2。
{"title":"Alpha-decay half-lives and alpha-capture cross-sections","authors":"V.Yu. Denisov","doi":"10.1016/j.adt.2024.101684","DOIUrl":"10.1016/j.adt.2024.101684","url":null,"abstract":"<div><div>The same alpha-nucleus interaction describes the alpha-decay and alpha-capture reactions in the Unified Model for Alpha-Decay and Alpha-Capture (UMADAC). The data for the ground-state-to-ground-state alpha-transition half-lives in 420 nuclei, the half-lives for alpha-transition from the ground state to the first excited <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> state in 74 even–even nuclei, and the alpha-capture cross sections of 20 spherical and deformed nuclei are used for defining the parameters of the UMADAC. The pointed data are well described in the framework of the UMADAC utilizing the obtained parameters. The ground-state-to-ground-state alpha-transition half-lives in 3802 nuclei with the proton <span><math><mi>Z</mi></math></span> and nucleon <span><math><mi>A</mi></math></span> numbers in the ranges 50 <span><math><mrow><mo>≤</mo><mi>Z</mi><mo>≤</mo></mrow></math></span> 126 and 97 <span><math><mrow><mo>≤</mo><mi>A</mi><mo>≤</mo></mrow></math></span> 340 are calculated in the UMADAC and presented in the <span><span>Table 1</span></span>. The quadrupole and hexadecapole deformations of the daughter nucleus are considered in the UMADAC. The minimal values of the orbital momenta of the alpha-transition between the ground states are found using available experimental and theoretical data for the ground state spin and parity values of nuclei. The half-lives for 223 alpha-transitions from the ground-state of the parent even–even nuclei to the lowest <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> state of the daughter nuclei with the proton <span><math><mi>Z</mi></math></span> and nucleon <span><math><mi>A</mi></math></span> numbers in the ranges 52 <span><math><mrow><mo>≤</mo><mi>Z</mi><mo>≤</mo></mrow></math></span> 102 and 108 <span><math><mrow><mo>≤</mo><mi>A</mi><mo>≤</mo></mrow></math></span> 254 are obtained in the UMADAC and given in the <span><span>Table 2</span></span>.</div></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"161 ","pages":"Article 101684"},"PeriodicalIF":2.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-empirical determination of radiative parameters for atomic cobalt 原子钴辐射参数的半经验测定
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-08-17 DOI: 10.1016/j.adt.2024.101683
M. Klempka , J. Ruczkowski , M. Elantkowska

The values of the radiative parameters for atomic cobalt were determined using a semi-empirical method. The eigenvector amplitudes determined in our previously published research were adopted. In most cases, the calculated values of the oscillator strengths and radiative lifetimes agree well with the experimental data. Predictions of the values of the radiative parameters are also provided.

原子钴的辐射参数值是用半经验方法确定的。采用了我们之前发表的研究中确定的特征向量振幅。在大多数情况下,振荡强度和辐射寿命的计算值与实验数据非常吻合。此外,还提供了辐射参数值的预测。
{"title":"Semi-empirical determination of radiative parameters for atomic cobalt","authors":"M. Klempka ,&nbsp;J. Ruczkowski ,&nbsp;M. Elantkowska","doi":"10.1016/j.adt.2024.101683","DOIUrl":"10.1016/j.adt.2024.101683","url":null,"abstract":"<div><p>The values of the radiative parameters for atomic cobalt were determined using a semi-empirical method. The eigenvector amplitudes determined in our previously published research were adopted. In most cases, the calculated values of the oscillator strengths and radiative lifetimes agree well with the experimental data. Predictions of the values of the radiative parameters are also provided.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"160 ","pages":"Article 101683"},"PeriodicalIF":2.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double helix level scheme of 171Yb nucleus 171Yb 核的双螺旋水平方案
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-08-05 DOI: 10.1016/j.adt.2024.101682
N. Nica
<div><p>We revisit the principles underlying high-spin level schemes, using the case of <sup>171</sup>Yb as an example. We first introduce the least-squares fit of the experimental <span><math><mi>γ</mi></math></span>-ray energy bands vs spin as a family of straight lines, <span><math><mrow><mn>2</mn><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>I</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. The fit captures the average rotational phenomenology of all the bands. The constant <span><math><mrow><mn>2</mn><mi>c</mi></mrow></math></span> average slope is the inverse of the effective moment of inertia <span><math><mrow><msubsup><mrow><mi>ℑ</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><msup><mrow><mo>ħ</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mi>c</mi></mrow></math></span>. The inclusion of the additional integer parameter <span><math><mi>k</mi></math></span> transforms the Bohr–Mottelson ideal rotor into a double helix structure that can accommodate all combinations of spin, parity, and signature quantum numbers for the rotational levels. Finally, the experimental <span><math><mi>γ</mi></math></span>-ray energies can be parametrized as <span><math><mrow><mn>2</mn><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mi>I</mi><mo>+</mo><mi>k</mi><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, where the additional integer <span><math><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> contains the deviations of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi></mrow></msub></math></span> values from the fit lines and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub></math></span> is the band inertial parameter, which determines the band moments of inertia, <span><math><mrow><msubsup><mrow><mi>ℑ</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><msup><mrow><mo>ħ</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub></mrow></math></span>. The new <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>2</mn><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mi>I</mi><mo>+</mo><mi>k</mi><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> parametrization leads to a natural <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> representation of the <sup>171</sup>Yb rotational bands as paths on the double helix structure. These paths contain
我们以 171Yb 为例,重温了高自旋水平方案的基本原理。我们首先将实验γ射线能带与自旋的最小二乘拟合介绍为一族直线--2c(2I+k-1)。该拟合捕捉到了所有能带的平均旋转现象。2c 的平均斜率常数是有效惯性矩ℑeff(2)=ħ2/2c 的倒数。 加入额外的整数参数 k 将玻尔-莫特森理想转子转换为双螺旋结构,可以容纳旋转水平的所有自旋、奇偶性和签名量子数组合。最后,实验γ射线能量可被参数化为 2cband(2I+k+k′-1),其中额外的整数 k′包含了 Eγ 值与拟合线的偏差,cband 是波段惯性参数,它决定了波段惯性矩ℑband(2)=2/2cband。新的 Eγ=2cband(2I+k+k′-1) 参数使得 171Yb 旋转带自然地以双螺旋结构上的路径进行三维表示。这些路径包含了 171Yb 核的宏观和微观运动的所有信息。
{"title":"Double helix level scheme of 171Yb nucleus","authors":"N. Nica","doi":"10.1016/j.adt.2024.101682","DOIUrl":"10.1016/j.adt.2024.101682","url":null,"abstract":"&lt;div&gt;&lt;p&gt;We revisit the principles underlying high-spin level schemes, using the case of &lt;sup&gt;171&lt;/sup&gt;Yb as an example. We first introduce the least-squares fit of the experimental &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-ray energy bands vs spin as a family of straight lines, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The fit captures the average rotational phenomenology of all the bands. The constant &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; average slope is the inverse of the effective moment of inertia &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;ℑ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;ħ&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The inclusion of the additional integer parameter &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; transforms the Bohr–Mottelson ideal rotor into a double helix structure that can accommodate all combinations of spin, parity, and signature quantum numbers for the rotational levels. Finally, the experimental &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-ray energies can be parametrized as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where the additional integer &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; contains the deviations of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; values from the fit lines and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is the band inertial parameter, which determines the band moments of inertia, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;ℑ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;ħ&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The new &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; parametrization leads to a natural &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; representation of the &lt;sup&gt;171&lt;/sup&gt;Yb rotational bands as paths on the double helix structure. These paths contain","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"160 ","pages":"Article 101682"},"PeriodicalIF":2.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Atomic Data and Nuclear Data Tables
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1