多焦点图像融合的邻居局部变异

I. Wahyuni, R. Sabre
{"title":"多焦点图像融合的邻居局部变异","authors":"I. Wahyuni, R. Sabre","doi":"10.5121/SIPIJ.2020.11603","DOIUrl":null,"url":null,"abstract":"The goal of multi-focus image fusion is to integrate images with different focus objects in order to obtain a single image with all focus objects. In this paper, we give a new method based on neighbour local variability (NLV) to fuse multi-focus images. At each pixel, the method uses the local variability calculated from the quadratic difference between the value of the pixel and the value of all pixels in its neighbourhood. It expresses the behaviour of the pixel with respect to its neighbours. The variability preserves the edge function because it detects the sharp intensity of the image. The proposed fusion of each pixel consists of weighting each pixel by the exponential of its local variability. The quality of this fusion depends on the size of the neighbourhood region considered. The size depends on the variance and the size of the blur filter. We start by modelling the value of the neighbourhood region size as a function of the variance and the size of the blur filter. We compare our method to other methods given in the literature. We show that our method gives a better result.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neighbour Local Variability for Multi-Focus Images Fusion\",\"authors\":\"I. Wahyuni, R. Sabre\",\"doi\":\"10.5121/SIPIJ.2020.11603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of multi-focus image fusion is to integrate images with different focus objects in order to obtain a single image with all focus objects. In this paper, we give a new method based on neighbour local variability (NLV) to fuse multi-focus images. At each pixel, the method uses the local variability calculated from the quadratic difference between the value of the pixel and the value of all pixels in its neighbourhood. It expresses the behaviour of the pixel with respect to its neighbours. The variability preserves the edge function because it detects the sharp intensity of the image. The proposed fusion of each pixel consists of weighting each pixel by the exponential of its local variability. The quality of this fusion depends on the size of the neighbourhood region considered. The size depends on the variance and the size of the blur filter. We start by modelling the value of the neighbourhood region size as a function of the variance and the size of the blur filter. We compare our method to other methods given in the literature. We show that our method gives a better result.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/SIPIJ.2020.11603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/SIPIJ.2020.11603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多焦点图像融合的目标是将具有不同焦点对象的图像进行融合,以获得具有所有焦点对象的单一图像。本文提出了一种基于邻域局部变异(NLV)的多焦点图像融合方法。在每个像素上,该方法使用由像素值与其邻域所有像素值之间的二次差计算的局部变异性。它表示像素相对于其邻居的行为。可变性保留了边缘函数,因为它检测图像的尖锐强度。所提出的每个像素的融合包括对每个像素的局部变异指数进行加权。这种融合的质量取决于所考虑的邻近区域的大小。大小取决于方差和模糊滤镜的大小。我们首先将邻域大小的值建模为方差和模糊过滤器大小的函数。我们将我们的方法与文献中给出的其他方法进行比较。结果表明,该方法能得到较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neighbour Local Variability for Multi-Focus Images Fusion
The goal of multi-focus image fusion is to integrate images with different focus objects in order to obtain a single image with all focus objects. In this paper, we give a new method based on neighbour local variability (NLV) to fuse multi-focus images. At each pixel, the method uses the local variability calculated from the quadratic difference between the value of the pixel and the value of all pixels in its neighbourhood. It expresses the behaviour of the pixel with respect to its neighbours. The variability preserves the edge function because it detects the sharp intensity of the image. The proposed fusion of each pixel consists of weighting each pixel by the exponential of its local variability. The quality of this fusion depends on the size of the neighbourhood region considered. The size depends on the variance and the size of the blur filter. We start by modelling the value of the neighbourhood region size as a function of the variance and the size of the blur filter. We compare our method to other methods given in the literature. We show that our method gives a better result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning A Comparative Study of Machine Learning Algorithms for EEG Signal Classification Combining of Narrative News and VR Games: Comparison of Various Forms of News Games Mixed Spectra for Stable Signals from Discrete Observations Fractional Order Butterworth Filter for Fetal Electrocardiographic Signal Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1