ThumbAir:在空气中键入头戴式显示器

Hyunjae Gil, Ian Oakley
{"title":"ThumbAir:在空气中键入头戴式显示器","authors":"Hyunjae Gil, Ian Oakley","doi":"10.1145/3569474","DOIUrl":null,"url":null,"abstract":"Typing while wearing a standalone Head Mounted Display (HMD)—systems without external input devices or sensors to support text entry—is hard. To address this issue, prior work has used external trackers to monitor finger movements to support in-air typing on virtual keyboards. While performance has been promising, current systems are practically infeasible: finger movements may be visually occluded from inside-out HMD based tracking systems or, otherwise, awkward and uncomfortable to perform. To address these issues, this paper explores an alternative approach. Taking inspiration from the prevalence of thumb-typing on mobile phones, we describe four studies exploring, defining and validating the performance of ThumbAir, an in-air thumb-typing system implemented on a commercial HMD. The first study explores viable target locations, ultimately recommending eight targets sites. The second study collects performance data for taps on pairs of these targets to both inform the design of a target selection procedure and also support a computational design process to select a keyboard layout. The final two studies validate the selected keyboard layout in word repetition and phrase entry tasks, ultimately achieving final WPMs of 27.1 and 13.73. Qualitative data captured in the final study indicate that the discreet movements required to operate ThumbAir, in comparison to the larger scale finger and hand motions used in a baseline design from prior work, lead to reduced levels of perceived exertion and physical demand and are rated as acceptable for use in a wider range of social situations.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"21 1","pages":"164:1-164:30"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ThumbAir: In-Air Typing for Head Mounted Displays\",\"authors\":\"Hyunjae Gil, Ian Oakley\",\"doi\":\"10.1145/3569474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typing while wearing a standalone Head Mounted Display (HMD)—systems without external input devices or sensors to support text entry—is hard. To address this issue, prior work has used external trackers to monitor finger movements to support in-air typing on virtual keyboards. While performance has been promising, current systems are practically infeasible: finger movements may be visually occluded from inside-out HMD based tracking systems or, otherwise, awkward and uncomfortable to perform. To address these issues, this paper explores an alternative approach. Taking inspiration from the prevalence of thumb-typing on mobile phones, we describe four studies exploring, defining and validating the performance of ThumbAir, an in-air thumb-typing system implemented on a commercial HMD. The first study explores viable target locations, ultimately recommending eight targets sites. The second study collects performance data for taps on pairs of these targets to both inform the design of a target selection procedure and also support a computational design process to select a keyboard layout. The final two studies validate the selected keyboard layout in word repetition and phrase entry tasks, ultimately achieving final WPMs of 27.1 and 13.73. Qualitative data captured in the final study indicate that the discreet movements required to operate ThumbAir, in comparison to the larger scale finger and hand motions used in a baseline design from prior work, lead to reduced levels of perceived exertion and physical demand and are rated as acceptable for use in a wider range of social situations.\",\"PeriodicalId\":20463,\"journal\":{\"name\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"volume\":\"21 1\",\"pages\":\"164:1-164:30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

戴着独立的头戴式显示器(HMD)打字很困难,因为该系统没有外部输入设备或传感器来支持文本输入。为了解决这个问题,之前的工作已经使用外部跟踪器来监控手指的运动,以支持在虚拟键盘上进行空中打字。虽然性能很有希望,但目前的系统实际上是不可行的:手指的运动可能会在视觉上被由内而外的基于HMD的跟踪系统遮挡,否则,操作起来会很尴尬和不舒服。为了解决这些问题,本文探讨了另一种方法。从手机拇指打字的流行中获得灵感,我们描述了四项研究,探索,定义和验证ThumbAir的性能,这是一个在商用HMD上实现的空中拇指打字系统。第一项研究探索了可行的目标地点,最终推荐了八个目标地点。第二项研究收集了敲击这些目标对的性能数据,以告知目标选择程序的设计,并支持选择键盘布局的计算设计过程。最后两项研究在单词重复和短语输入任务中验证了所选择的键盘布局,最终实现了27.1和13.73的最终wpm。最终研究中获得的定性数据表明,与之前工作中基线设计中使用的更大规模手指和手部运动相比,操作ThumbAir所需的谨慎动作导致感知劳累和体力需求水平降低,并被评为可接受的,用于更广泛的社交场合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ThumbAir: In-Air Typing for Head Mounted Displays
Typing while wearing a standalone Head Mounted Display (HMD)—systems without external input devices or sensors to support text entry—is hard. To address this issue, prior work has used external trackers to monitor finger movements to support in-air typing on virtual keyboards. While performance has been promising, current systems are practically infeasible: finger movements may be visually occluded from inside-out HMD based tracking systems or, otherwise, awkward and uncomfortable to perform. To address these issues, this paper explores an alternative approach. Taking inspiration from the prevalence of thumb-typing on mobile phones, we describe four studies exploring, defining and validating the performance of ThumbAir, an in-air thumb-typing system implemented on a commercial HMD. The first study explores viable target locations, ultimately recommending eight targets sites. The second study collects performance data for taps on pairs of these targets to both inform the design of a target selection procedure and also support a computational design process to select a keyboard layout. The final two studies validate the selected keyboard layout in word repetition and phrase entry tasks, ultimately achieving final WPMs of 27.1 and 13.73. Qualitative data captured in the final study indicate that the discreet movements required to operate ThumbAir, in comparison to the larger scale finger and hand motions used in a baseline design from prior work, lead to reduced levels of perceived exertion and physical demand and are rated as acceptable for use in a wider range of social situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Subject 3D Human Mesh Construction Using Commodity WiFi UHead: Driver Attention Monitoring System Using UWB Radar DeltaLCA: Comparative Life-Cycle Assessment for Electronics Design Multimodal Daily-Life Logging in Free-living Environment Using Non-Visual Egocentric Sensors on a Smartphone Lateralization Effects in Electrodermal Activity Data Collected Using Wearable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1