Alexandra Shchukina, Mateusz Urbańczyk, Paweł Kasprzak, Krzysztof Kazimierczuk
{"title":"系列核磁共振实验的替代数据处理技术","authors":"Alexandra Shchukina, Mateusz Urbańczyk, Paweł Kasprzak, Krzysztof Kazimierczuk","doi":"10.1002/cmr.a.21429","DOIUrl":null,"url":null,"abstract":"<p>NMR measurements are often performed in a serial manner, that is, the acquisition of an FID signal is repeated under various conditions, either controlled (as temperature or pH changes) or uncontrolled (as reaction progress). The traditional approach to process “serial” data is to perform the Fourier transform of each FID in a series. However, it suffers from several problems, in particular, from the need to sample full Nyquist grid and reach a sufficient signal-to-noise ratio in each separate spectrum. The problems become particularly cumbersome in the case of multidimensional signals, where sampling is costly and sensitivity is an issue. Over the years, several methods of alternative, “joint” processing of FID series have been proposed. In this paper, we discuss the principles of some of them: Accordion Spectroscopy, Multidimensional Decomposition, Radon transform, a combination of Compressed Sensing and the Laplace transform. According to our knowledge, this is the first review on serial NMR data processing approaches. The reader is provided with MATLAB scripts allowing to perform simulations and processing using these algorithms.</p>","PeriodicalId":55216,"journal":{"name":"Concepts in Magnetic Resonance Part A","volume":"46A 2","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.a.21429","citationCount":"11","resultStr":"{\"title\":\"Alternative data processing techniques for serial NMR experiments\",\"authors\":\"Alexandra Shchukina, Mateusz Urbańczyk, Paweł Kasprzak, Krzysztof Kazimierczuk\",\"doi\":\"10.1002/cmr.a.21429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>NMR measurements are often performed in a serial manner, that is, the acquisition of an FID signal is repeated under various conditions, either controlled (as temperature or pH changes) or uncontrolled (as reaction progress). The traditional approach to process “serial” data is to perform the Fourier transform of each FID in a series. However, it suffers from several problems, in particular, from the need to sample full Nyquist grid and reach a sufficient signal-to-noise ratio in each separate spectrum. The problems become particularly cumbersome in the case of multidimensional signals, where sampling is costly and sensitivity is an issue. Over the years, several methods of alternative, “joint” processing of FID series have been proposed. In this paper, we discuss the principles of some of them: Accordion Spectroscopy, Multidimensional Decomposition, Radon transform, a combination of Compressed Sensing and the Laplace transform. According to our knowledge, this is the first review on serial NMR data processing approaches. The reader is provided with MATLAB scripts allowing to perform simulations and processing using these algorithms.</p>\",\"PeriodicalId\":55216,\"journal\":{\"name\":\"Concepts in Magnetic Resonance Part A\",\"volume\":\"46A 2\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmr.a.21429\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concepts in Magnetic Resonance Part A\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmr.a.21429\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part A","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.a.21429","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Alternative data processing techniques for serial NMR experiments
NMR measurements are often performed in a serial manner, that is, the acquisition of an FID signal is repeated under various conditions, either controlled (as temperature or pH changes) or uncontrolled (as reaction progress). The traditional approach to process “serial” data is to perform the Fourier transform of each FID in a series. However, it suffers from several problems, in particular, from the need to sample full Nyquist grid and reach a sufficient signal-to-noise ratio in each separate spectrum. The problems become particularly cumbersome in the case of multidimensional signals, where sampling is costly and sensitivity is an issue. Over the years, several methods of alternative, “joint” processing of FID series have been proposed. In this paper, we discuss the principles of some of them: Accordion Spectroscopy, Multidimensional Decomposition, Radon transform, a combination of Compressed Sensing and the Laplace transform. According to our knowledge, this is the first review on serial NMR data processing approaches. The reader is provided with MATLAB scripts allowing to perform simulations and processing using these algorithms.
期刊介绍:
Concepts in Magnetic Resonance Part A brings together clinicians, chemists, and physicists involved in the application of magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from academic, governmental, and clinical communities, to disseminate the latest important experimental results from medical, non-medical, and analytical magnetic resonance methods, as well as related computational and theoretical advances.
Subject areas include (but are by no means limited to):
-Fundamental advances in the understanding of magnetic resonance
-Experimental results from magnetic resonance imaging (including MRI and its specialized applications)
-Experimental results from magnetic resonance spectroscopy (including NMR, EPR, and their specialized applications)
-Computational and theoretical support and prediction for experimental results
-Focused reviews providing commentary and discussion on recent results and developments in topical areas of investigation
-Reviews of magnetic resonance approaches with a tutorial or educational approach