蒙特卡罗渲染中噪声检测的导向生成网络

Jérôme Buisine, F. Teytaud, S. Delepoulle, C. Renaud
{"title":"蒙特卡罗渲染中噪声检测的导向生成网络","authors":"Jérôme Buisine, F. Teytaud, S. Delepoulle, C. Renaud","doi":"10.1109/ICMLA52953.2021.00018","DOIUrl":null,"url":null,"abstract":"Estimating the features to be extracted from an image for classification tasks are sometimes difficult, especially if images are related to a particular kind of noise. The aim of this paper is to propose a neural network architecture named Guided-Generative Network (GGN) to extract refined information that allows to correctly quantify the noise present in a sliding window of images. GNN tends to find the desired features to address such a problem in order to emit a detection criterion of this noise. The proposed GGN is applied on photorealistic images which are rendered by Monte-Carlo methods by evaluating a large number of samples per pixel. An insufficient number of samples per pixel tends to result in residual noise which is very noticeable to humans. This noise can be reduced by increasing the number of samples, as proven by Monte-Carlo theory, but this involves considerable computational time. Finding the right number of samples needed for human observers to perceive no noise is still an open problem. The results obtained show that GGN can correctly solve the problem without prior knowledge of the noise while being competitive with existing methods.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"17 1","pages":"61-66"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guided-Generative Network for noise detection in Monte-Carlo rendering\",\"authors\":\"Jérôme Buisine, F. Teytaud, S. Delepoulle, C. Renaud\",\"doi\":\"10.1109/ICMLA52953.2021.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the features to be extracted from an image for classification tasks are sometimes difficult, especially if images are related to a particular kind of noise. The aim of this paper is to propose a neural network architecture named Guided-Generative Network (GGN) to extract refined information that allows to correctly quantify the noise present in a sliding window of images. GNN tends to find the desired features to address such a problem in order to emit a detection criterion of this noise. The proposed GGN is applied on photorealistic images which are rendered by Monte-Carlo methods by evaluating a large number of samples per pixel. An insufficient number of samples per pixel tends to result in residual noise which is very noticeable to humans. This noise can be reduced by increasing the number of samples, as proven by Monte-Carlo theory, but this involves considerable computational time. Finding the right number of samples needed for human observers to perceive no noise is still an open problem. The results obtained show that GGN can correctly solve the problem without prior knowledge of the noise while being competitive with existing methods.\",\"PeriodicalId\":6750,\"journal\":{\"name\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"17 1\",\"pages\":\"61-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA52953.2021.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

估计从图像中提取的特征用于分类任务有时是困难的,特别是当图像与特定类型的噪声相关时。本文的目的是提出一种名为引导生成网络(GGN)的神经网络架构,以提取精细信息,从而正确量化图像滑动窗口中存在的噪声。GNN倾向于找到所需的特征来解决这样的问题,以便发出该噪声的检测准则。通过对每像素的大量样本进行评估,将所提出的GGN应用于蒙特卡罗方法渲染的逼真图像。每个像素的样本数量不足往往会导致对人类来说非常明显的残余噪声。正如蒙特卡罗理论所证明的那样,可以通过增加样本数量来减少这种噪声,但这需要大量的计算时间。如何找到正确数量的样本,使人类观察者感觉不到噪音,仍然是一个悬而未决的问题。结果表明,该算法在不需要先验知识的情况下能够正确地解决问题,并与现有方法相竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Guided-Generative Network for noise detection in Monte-Carlo rendering
Estimating the features to be extracted from an image for classification tasks are sometimes difficult, especially if images are related to a particular kind of noise. The aim of this paper is to propose a neural network architecture named Guided-Generative Network (GGN) to extract refined information that allows to correctly quantify the noise present in a sliding window of images. GNN tends to find the desired features to address such a problem in order to emit a detection criterion of this noise. The proposed GGN is applied on photorealistic images which are rendered by Monte-Carlo methods by evaluating a large number of samples per pixel. An insufficient number of samples per pixel tends to result in residual noise which is very noticeable to humans. This noise can be reduced by increasing the number of samples, as proven by Monte-Carlo theory, but this involves considerable computational time. Finding the right number of samples needed for human observers to perceive no noise is still an open problem. The results obtained show that GGN can correctly solve the problem without prior knowledge of the noise while being competitive with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1