头部温度调节人类在寒冷环境中的热行为。

Toby Mündel, Aaron Raman, Zachary J Schlader
{"title":"头部温度调节人类在寒冷环境中的热行为。","authors":"Toby Mündel, Aaron Raman, Zachary J Schlader","doi":"10.1080/23328940.2016.1156214","DOIUrl":null,"url":null,"abstract":"<p><p>We tested the hypothesis that skin temperature, specifically of the head, is capable of modulating thermal behavior during exercise in the cold. Following familiarization 8 young, healthy, recreationally active males completed 3 trials, each consisting of 30 minutes of self-paced cycle ergometry in 6°C. Participants were instructed to control their exercise work rate to achieve and maintain thermal comfort. On one occasion participants wore only shorts and shoes (Control) and on the 2 other occasions their head was either warmed (Warming) or cooled (Cooling). Work rate, rate of metabolic heat production, thermal perceptions, rectal, mean weighted skin and head temperatures were measured. Exercise work rate was reduced during Warming and augmented during Cooling after the first and second minutes of exercise, respectively (P ≤ 0.04), with the rate of metabolic heat production mirroring work rate. At this early stage of exercise (≤5 min) the changes over time for rectal temperature were negligible and similar (0.1 ± 0.1°C, P = 0.51), while the decrease in mean skin temperature was not different between all trials (1.7 ± 0.6°C, P = 0.13). Mean head temperature was either decreased (Control: 1.5 ± 1.1°C, Cooling: 2.9 ± 0.8°C, both P < 0.01) or increased (Warming: 1.7 ± 0.9°C, P < 0.01). Head thermal perception was warmer and more comfortable in Warming and cooler and less comfortable in Cooling (P < 0.01). Participants achieved thermal comfort similarly in all trials (P > 0.09) after 10 ± 7 min and this was maintained until the end of exercise. These results indicate that peripheral temperatures modulate thermal behavior in the cold.</p>","PeriodicalId":22565,"journal":{"name":"Temperature: Multidisciplinary Biomedical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965003/pdf/","citationCount":"0","resultStr":"{\"title\":\"Head temperature modulates thermal behavior in the cold in humans.\",\"authors\":\"Toby Mündel, Aaron Raman, Zachary J Schlader\",\"doi\":\"10.1080/23328940.2016.1156214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We tested the hypothesis that skin temperature, specifically of the head, is capable of modulating thermal behavior during exercise in the cold. Following familiarization 8 young, healthy, recreationally active males completed 3 trials, each consisting of 30 minutes of self-paced cycle ergometry in 6°C. Participants were instructed to control their exercise work rate to achieve and maintain thermal comfort. On one occasion participants wore only shorts and shoes (Control) and on the 2 other occasions their head was either warmed (Warming) or cooled (Cooling). Work rate, rate of metabolic heat production, thermal perceptions, rectal, mean weighted skin and head temperatures were measured. Exercise work rate was reduced during Warming and augmented during Cooling after the first and second minutes of exercise, respectively (P ≤ 0.04), with the rate of metabolic heat production mirroring work rate. At this early stage of exercise (≤5 min) the changes over time for rectal temperature were negligible and similar (0.1 ± 0.1°C, P = 0.51), while the decrease in mean skin temperature was not different between all trials (1.7 ± 0.6°C, P = 0.13). Mean head temperature was either decreased (Control: 1.5 ± 1.1°C, Cooling: 2.9 ± 0.8°C, both P < 0.01) or increased (Warming: 1.7 ± 0.9°C, P < 0.01). Head thermal perception was warmer and more comfortable in Warming and cooler and less comfortable in Cooling (P < 0.01). Participants achieved thermal comfort similarly in all trials (P > 0.09) after 10 ± 7 min and this was maintained until the end of exercise. These results indicate that peripheral temperatures modulate thermal behavior in the cold.</p>\",\"PeriodicalId\":22565,\"journal\":{\"name\":\"Temperature: Multidisciplinary Biomedical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965003/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Temperature: Multidisciplinary Biomedical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23328940.2016.1156214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Temperature: Multidisciplinary Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23328940.2016.1156214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们测试了一个假设,即皮肤温度(尤其是头部皮肤温度)能够调节寒冷环境下运动时的热行为。经过熟悉后,8 名年轻、健康、喜欢娱乐的男性完成了 3 次试验,每次试验包括在 6°C 温度下进行 30 分钟的自定节奏自行车测力。参与者被要求控制运动速度,以达到并保持热舒适度。在一次试验中,参与者只穿短裤和鞋子(对照组),而在另外两次试验中,他们的头部要么被加温(升温),要么被降温(降温)。对工作率、代谢产热率、热感知、直肠温度、平均加权皮肤温度和头部温度进行了测量。在运动的第一分钟和第二分钟后,"热身 "和 "降温 "时的运动功耗分别降低和增加(P ≤ 0.04),代谢产热率反映了功耗。在运动的早期阶段(≤5 分钟),直肠温度随时间的变化可忽略不计且相似(0.1 ± 0.1°C,P = 0.51),而平均皮肤温度的下降在所有试验中没有差异(1.7 ± 0.6°C,P = 0.13)。头部平均温度要么降低(对照组:1.5 ± 1.1°C;冷却组:2.9 ± 0.8°C,P 均 < 0.01),要么升高(升温组:1.7 ± 0.9°C,P < 0.01)。在 "升温 "模式下,头部的热感觉更温暖、更舒适,而在 "降温 "模式下,头部的热感觉更凉爽、更不舒适(P < 0.01)。在所有试验中,参与者在 10 ± 7 分钟后都达到了类似的热舒适度(P > 0.09),这种舒适度一直保持到运动结束。这些结果表明,外周温度会调节寒冷时的热行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Head temperature modulates thermal behavior in the cold in humans.

We tested the hypothesis that skin temperature, specifically of the head, is capable of modulating thermal behavior during exercise in the cold. Following familiarization 8 young, healthy, recreationally active males completed 3 trials, each consisting of 30 minutes of self-paced cycle ergometry in 6°C. Participants were instructed to control their exercise work rate to achieve and maintain thermal comfort. On one occasion participants wore only shorts and shoes (Control) and on the 2 other occasions their head was either warmed (Warming) or cooled (Cooling). Work rate, rate of metabolic heat production, thermal perceptions, rectal, mean weighted skin and head temperatures were measured. Exercise work rate was reduced during Warming and augmented during Cooling after the first and second minutes of exercise, respectively (P ≤ 0.04), with the rate of metabolic heat production mirroring work rate. At this early stage of exercise (≤5 min) the changes over time for rectal temperature were negligible and similar (0.1 ± 0.1°C, P = 0.51), while the decrease in mean skin temperature was not different between all trials (1.7 ± 0.6°C, P = 0.13). Mean head temperature was either decreased (Control: 1.5 ± 1.1°C, Cooling: 2.9 ± 0.8°C, both P < 0.01) or increased (Warming: 1.7 ± 0.9°C, P < 0.01). Head thermal perception was warmer and more comfortable in Warming and cooler and less comfortable in Cooling (P < 0.01). Participants achieved thermal comfort similarly in all trials (P > 0.09) after 10 ± 7 min and this was maintained until the end of exercise. These results indicate that peripheral temperatures modulate thermal behavior in the cold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The multifaceted benefits of passive heat therapies for extending the healthspan: A comprehensive review with a focus on Finnish sauna Thermoregulation in mice: The road to understanding torpor hypothermia and the shortcomings of a circuit for generating fever Advances in thermal physiology of diving marine mammals: The dual role of peripheral perfusion. Cooling vests alleviate perceptual heat strain perceived by COVID-19 nurses Physiology of sweat gland function: The roles of sweating and sweat composition in human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1