{"title":"埃塞俄比亚中部高原北部Shoa区Hidabu Abote区Sire Morose小流域土地利用类型对土壤有机碳储量的影响","authors":"Dereje Girma, Lemma Wogi, Samuel Feyissa","doi":"10.11648/J.SR.20200801.11","DOIUrl":null,"url":null,"abstract":"Information about effects of different land use types on soil organic carbon stock is crucial for best land management practices and combating climate change and enhancing ecological restoration. The study was aimed to estimate the effect of land use types on soil organic carbon stock at sire morose sub watershed Hidbuabote district Ethiopia. Three land use types were selected from the sub watershed (Forest, grazing and cultivated land). Undisturbed core and disturbed composite soil samples were collected randomly from three sites with three replications from each land use type at two varying depths (0-20cm and 20-40cm) and subjected to laboratory soil analysis. Heterogeneity in soil C storage was observed across land use types and along soil depth due to disparity in spatial distribution of soil C densities arising from the influences of variations in land use types and management practices. Accordingly, the total mean values soil organic carbon stocks (SOCS) for forest land was 85.97Mg/ha, which was higher than that of grazing land (83.45Mg/ha) and the lowest being that of cultivated land (49.54Mg/ha). Moreover, the average CO2e sink was 315.51 Mg ha-1, 306.26 Mg ha-1 and 181.81Mg ha-1 in soil of the forest, grazing and cultivated land, respectively. Relatively the result shows potential contribution of forestland use types to enhance soil organic carbon stocks and environmental protection.","PeriodicalId":30081,"journal":{"name":"Advances in Science and Research","volume":"13 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of Land use Types on Soil Organic Carbon Stock at Sire Morose Sub Watershed, Hidabu Abote District of North Shoa Zone, Central Highland of Ethiopia\",\"authors\":\"Dereje Girma, Lemma Wogi, Samuel Feyissa\",\"doi\":\"10.11648/J.SR.20200801.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information about effects of different land use types on soil organic carbon stock is crucial for best land management practices and combating climate change and enhancing ecological restoration. The study was aimed to estimate the effect of land use types on soil organic carbon stock at sire morose sub watershed Hidbuabote district Ethiopia. Three land use types were selected from the sub watershed (Forest, grazing and cultivated land). Undisturbed core and disturbed composite soil samples were collected randomly from three sites with three replications from each land use type at two varying depths (0-20cm and 20-40cm) and subjected to laboratory soil analysis. Heterogeneity in soil C storage was observed across land use types and along soil depth due to disparity in spatial distribution of soil C densities arising from the influences of variations in land use types and management practices. Accordingly, the total mean values soil organic carbon stocks (SOCS) for forest land was 85.97Mg/ha, which was higher than that of grazing land (83.45Mg/ha) and the lowest being that of cultivated land (49.54Mg/ha). Moreover, the average CO2e sink was 315.51 Mg ha-1, 306.26 Mg ha-1 and 181.81Mg ha-1 in soil of the forest, grazing and cultivated land, respectively. Relatively the result shows potential contribution of forestland use types to enhance soil organic carbon stocks and environmental protection.\",\"PeriodicalId\":30081,\"journal\":{\"name\":\"Advances in Science and Research\",\"volume\":\"13 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SR.20200801.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SR.20200801.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Effect of Land use Types on Soil Organic Carbon Stock at Sire Morose Sub Watershed, Hidabu Abote District of North Shoa Zone, Central Highland of Ethiopia
Information about effects of different land use types on soil organic carbon stock is crucial for best land management practices and combating climate change and enhancing ecological restoration. The study was aimed to estimate the effect of land use types on soil organic carbon stock at sire morose sub watershed Hidbuabote district Ethiopia. Three land use types were selected from the sub watershed (Forest, grazing and cultivated land). Undisturbed core and disturbed composite soil samples were collected randomly from three sites with three replications from each land use type at two varying depths (0-20cm and 20-40cm) and subjected to laboratory soil analysis. Heterogeneity in soil C storage was observed across land use types and along soil depth due to disparity in spatial distribution of soil C densities arising from the influences of variations in land use types and management practices. Accordingly, the total mean values soil organic carbon stocks (SOCS) for forest land was 85.97Mg/ha, which was higher than that of grazing land (83.45Mg/ha) and the lowest being that of cultivated land (49.54Mg/ha). Moreover, the average CO2e sink was 315.51 Mg ha-1, 306.26 Mg ha-1 and 181.81Mg ha-1 in soil of the forest, grazing and cultivated land, respectively. Relatively the result shows potential contribution of forestland use types to enhance soil organic carbon stocks and environmental protection.