{"title":"现代网络物理系统存在漏洞时的最佳计划干预","authors":"Hunor Sándor, P. Haller, B. Genge, Z. Kátai","doi":"10.1109/INDIN.2017.8104756","DOIUrl":null,"url":null,"abstract":"A large variety of modern technologies fade the borders between the cyber and the physical worlds. Nonetheless, the two-dimensional architecture of cyber-physical systems also enabled the proliferation of innovative attacks where traditional computer systems malware caused significant damages to physical infrastructures, such as the power grid. In this work, we propose a methodology that provides optimal intervention strategies for fixing vulnerabilities discovered in production cyber-physical systems. The main goal of the technique is to decrease the risk of vulnerabilities being exploited by malicious actors, by leveraging risk modeling together with advanced job scheduling algorithms. The proposal is evaluated through use-cases from the healthcare domain.","PeriodicalId":6595,"journal":{"name":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","volume":"116 1","pages":"115-120"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimally scheduled interventions in the presence of vulnerabilities for modern cyber-physical systems\",\"authors\":\"Hunor Sándor, P. Haller, B. Genge, Z. Kátai\",\"doi\":\"10.1109/INDIN.2017.8104756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large variety of modern technologies fade the borders between the cyber and the physical worlds. Nonetheless, the two-dimensional architecture of cyber-physical systems also enabled the proliferation of innovative attacks where traditional computer systems malware caused significant damages to physical infrastructures, such as the power grid. In this work, we propose a methodology that provides optimal intervention strategies for fixing vulnerabilities discovered in production cyber-physical systems. The main goal of the technique is to decrease the risk of vulnerabilities being exploited by malicious actors, by leveraging risk modeling together with advanced job scheduling algorithms. The proposal is evaluated through use-cases from the healthcare domain.\",\"PeriodicalId\":6595,\"journal\":{\"name\":\"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"116 1\",\"pages\":\"115-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2017.8104756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2017.8104756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimally scheduled interventions in the presence of vulnerabilities for modern cyber-physical systems
A large variety of modern technologies fade the borders between the cyber and the physical worlds. Nonetheless, the two-dimensional architecture of cyber-physical systems also enabled the proliferation of innovative attacks where traditional computer systems malware caused significant damages to physical infrastructures, such as the power grid. In this work, we propose a methodology that provides optimal intervention strategies for fixing vulnerabilities discovered in production cyber-physical systems. The main goal of the technique is to decrease the risk of vulnerabilities being exploited by malicious actors, by leveraging risk modeling together with advanced job scheduling algorithms. The proposal is evaluated through use-cases from the healthcare domain.