基于传感器数据的时间序列预测技术

Adriana Horelu, C. Leordeanu, E. Apostol, Dan Huru, M. Mocanu, V. Cristea
{"title":"基于传感器数据的时间序列预测技术","authors":"Adriana Horelu, C. Leordeanu, E. Apostol, Dan Huru, M. Mocanu, V. Cristea","doi":"10.1109/SYNASC.2015.49","DOIUrl":null,"url":null,"abstract":"Forecasting has always been of interest. Whether one's field is finance, health or seismology, being able to predict future values based on previously gathered data proves to be invaluable when taking decisions concerning the future. In this paper, we research machine learning techniques for predictions on time series and choose the best models that fit our use case, Smart Farms, in which we distributedly analyze time series received from farm-monitoring sensors. On time series with short term dependencies, like temperature or pressure, we make predictions with Hidden Markov Models, whilst for those with long range dependencies, like ground wind speeds orprecipitations, we use Recurrent Neural Networks with Long Short-Term Memory architecture.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"29 1","pages":"261-264"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Forecasting Techniques for Time Series from Sensor Data\",\"authors\":\"Adriana Horelu, C. Leordeanu, E. Apostol, Dan Huru, M. Mocanu, V. Cristea\",\"doi\":\"10.1109/SYNASC.2015.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting has always been of interest. Whether one's field is finance, health or seismology, being able to predict future values based on previously gathered data proves to be invaluable when taking decisions concerning the future. In this paper, we research machine learning techniques for predictions on time series and choose the best models that fit our use case, Smart Farms, in which we distributedly analyze time series received from farm-monitoring sensors. On time series with short term dependencies, like temperature or pressure, we make predictions with Hidden Markov Models, whilst for those with long range dependencies, like ground wind speeds orprecipitations, we use Recurrent Neural Networks with Long Short-Term Memory architecture.\",\"PeriodicalId\":6488,\"journal\":{\"name\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"29 1\",\"pages\":\"261-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2015.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

预测一直是人们的兴趣所在。无论一个人的领域是金融、健康还是地震学,在做出有关未来的决策时,能够根据先前收集的数据预测未来的价值被证明是非常宝贵的。在本文中,我们研究了用于时间序列预测的机器学习技术,并选择了适合我们用例智能农场的最佳模型,其中我们分布式地分析了从农场监测传感器接收的时间序列。对于具有短期依赖关系的时间序列,如温度或压力,我们使用隐马尔可夫模型进行预测,而对于那些具有长期依赖关系的时间序列,如地面风速或降水,我们使用具有长短期记忆架构的递归神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting Techniques for Time Series from Sensor Data
Forecasting has always been of interest. Whether one's field is finance, health or seismology, being able to predict future values based on previously gathered data proves to be invaluable when taking decisions concerning the future. In this paper, we research machine learning techniques for predictions on time series and choose the best models that fit our use case, Smart Farms, in which we distributedly analyze time series received from farm-monitoring sensors. On time series with short term dependencies, like temperature or pressure, we make predictions with Hidden Markov Models, whilst for those with long range dependencies, like ground wind speeds orprecipitations, we use Recurrent Neural Networks with Long Short-Term Memory architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Reasoning on Strongly Distributed Multi-agent Systems Extensions over OpenCL for Latency Reduction and Critical Applications An Improved Upper-Bound Algorithm for Non-preemptive Task Scheduling Adaptations of the k-Means Algorithm to Community Detection in Parallel Environments Improving Malware Detection Response Time with Behavior-Based Statistical Analysis Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1