胸腔图像快速分析检测病毒感染

Q3 Computer Science 中国图象图形学报 Pub Date : 2023-06-01 DOI:10.18178/joig.11.2.115-120
R. Radtke, Alexander Jesser
{"title":"胸腔图像快速分析检测病毒感染","authors":"R. Radtke, Alexander Jesser","doi":"10.18178/joig.11.2.115-120","DOIUrl":null,"url":null,"abstract":"At the end of December 2019, a person in the Chinse city Wuhan was probably infected for the first time with the novel SARS-CoV-2 virus. In order to be able to react as quickly as possible after infection rapid diagnostic measures are of the utmost importance so that medical treatment can be taken at an early stage. An imageprocessing algorithm is presented using chest X-rays to determine whether a lung infection has a viral or a bacterial cause. In comparison to other more complicated evaluation methods, focus was put on using a simple algorithm by using the Canny algorithm for edge detection of infected areas of the lung tissue instead of complex deep learning processes. Main advantage here is that the method is portable to many different computer systems with little effort and does not need huge computing power. This should contribute to a faster diagnosis of SARS-CoV-2 virus-infection, especially in medically underdeveloped areas.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Analysis of Thorax Images for the Detection of Viral Infections\",\"authors\":\"R. Radtke, Alexander Jesser\",\"doi\":\"10.18178/joig.11.2.115-120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the end of December 2019, a person in the Chinse city Wuhan was probably infected for the first time with the novel SARS-CoV-2 virus. In order to be able to react as quickly as possible after infection rapid diagnostic measures are of the utmost importance so that medical treatment can be taken at an early stage. An imageprocessing algorithm is presented using chest X-rays to determine whether a lung infection has a viral or a bacterial cause. In comparison to other more complicated evaluation methods, focus was put on using a simple algorithm by using the Canny algorithm for edge detection of infected areas of the lung tissue instead of complex deep learning processes. Main advantage here is that the method is portable to many different computer systems with little effort and does not need huge computing power. This should contribute to a faster diagnosis of SARS-CoV-2 virus-infection, especially in medically underdeveloped areas.\",\"PeriodicalId\":36336,\"journal\":{\"name\":\"中国图象图形学报\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国图象图形学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.18178/joig.11.2.115-120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.2.115-120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

2019年12月底,中国武汉市有一人可能首次感染了新型SARS-CoV-2病毒。为了能够在感染后尽快作出反应,快速诊断措施至关重要,以便能够在早期阶段采取医疗措施。提出了一种图像处理算法,使用胸部x光片来确定肺部感染是由病毒还是细菌引起的。与其他较为复杂的评估方法相比,重点是使用Canny算法对肺组织感染区域进行边缘检测,而不是使用复杂的深度学习过程。这里的主要优点是该方法可以轻松地移植到许多不同的计算机系统,并且不需要巨大的计算能力。这将有助于更快地诊断SARS-CoV-2病毒感染,特别是在医疗欠发达地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid Analysis of Thorax Images for the Detection of Viral Infections
At the end of December 2019, a person in the Chinse city Wuhan was probably infected for the first time with the novel SARS-CoV-2 virus. In order to be able to react as quickly as possible after infection rapid diagnostic measures are of the utmost importance so that medical treatment can be taken at an early stage. An imageprocessing algorithm is presented using chest X-rays to determine whether a lung infection has a viral or a bacterial cause. In comparison to other more complicated evaluation methods, focus was put on using a simple algorithm by using the Canny algorithm for edge detection of infected areas of the lung tissue instead of complex deep learning processes. Main advantage here is that the method is portable to many different computer systems with little effort and does not need huge computing power. This should contribute to a faster diagnosis of SARS-CoV-2 virus-infection, especially in medically underdeveloped areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
期刊最新文献
Roselle Pest Detection and Classification Using Threshold and Template Matching Human Action Recognition with Skeleton and Infrared Fusion Model Melanoma Detection Based on SVM Using MATLAB Evaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline MonitoringEvaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline Monitoring Improving Brain Tumor Classification Efficacy through the Application of Feature Selection and Ensemble Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1