David Nusbaumer, Lucas Marques da Cunha, Claus Wedekind
{"title":"精子冷冻会降低后代的生长速度。","authors":"David Nusbaumer, Lucas Marques da Cunha, Claus Wedekind","doi":"10.1098/rspb.2019.1644","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm cryopreservation is routinely used in reproductive medicine, livestock production and wildlife management. Its effect on offspring performance is often assumed to be negligible, but this still remains to be confirmed in well-controlled within-subject experiments. We use a vertebrate model that allows us to experimentally separate parental and environmental effects to test whether sperm cryopreservation influences offspring phenotype under stress and non-stress conditions, and whether such effects are male-specific. Wild brown trout (<i>Salmo trutta</i>) were stripped for their gametes, and a portion of each male's milt was cryopreserved. Then, 960 eggs were simultaneously fertilized with either non-cryopreserved or frozen-thawed semen and raised singly in the presence or absence of a pathogen. We found no significant effects of cryopreservation on fertilization rates, and no effects on growth, survival nor pathogen resistance during the embryo stage. However, fertilization by cryopreserved sperm led to significantly reduced larval growth after hatching. Males varied in genetic quality as determined from offspring performance, but effects of cryopreservation on larval growth were not male-specific. We conclude that cryopreservation causes a reduction in offspring growth that is easily overlooked because it only manifests itself at later developmental stages, when many other factors affect growth and survival too.</p>","PeriodicalId":15836,"journal":{"name":"Journal of Geophysical Research","volume":"110 1","pages":"20191644"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784727/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sperm cryopreservation reduces offspring growth.\",\"authors\":\"David Nusbaumer, Lucas Marques da Cunha, Claus Wedekind\",\"doi\":\"10.1098/rspb.2019.1644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sperm cryopreservation is routinely used in reproductive medicine, livestock production and wildlife management. Its effect on offspring performance is often assumed to be negligible, but this still remains to be confirmed in well-controlled within-subject experiments. We use a vertebrate model that allows us to experimentally separate parental and environmental effects to test whether sperm cryopreservation influences offspring phenotype under stress and non-stress conditions, and whether such effects are male-specific. Wild brown trout (<i>Salmo trutta</i>) were stripped for their gametes, and a portion of each male's milt was cryopreserved. Then, 960 eggs were simultaneously fertilized with either non-cryopreserved or frozen-thawed semen and raised singly in the presence or absence of a pathogen. We found no significant effects of cryopreservation on fertilization rates, and no effects on growth, survival nor pathogen resistance during the embryo stage. However, fertilization by cryopreserved sperm led to significantly reduced larval growth after hatching. Males varied in genetic quality as determined from offspring performance, but effects of cryopreservation on larval growth were not male-specific. We conclude that cryopreservation causes a reduction in offspring growth that is easily overlooked because it only manifests itself at later developmental stages, when many other factors affect growth and survival too.</p>\",\"PeriodicalId\":15836,\"journal\":{\"name\":\"Journal of Geophysical Research\",\"volume\":\"110 1\",\"pages\":\"20191644\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784727/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2019.1644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.2019.1644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Sperm cryopreservation is routinely used in reproductive medicine, livestock production and wildlife management. Its effect on offspring performance is often assumed to be negligible, but this still remains to be confirmed in well-controlled within-subject experiments. We use a vertebrate model that allows us to experimentally separate parental and environmental effects to test whether sperm cryopreservation influences offspring phenotype under stress and non-stress conditions, and whether such effects are male-specific. Wild brown trout (Salmo trutta) were stripped for their gametes, and a portion of each male's milt was cryopreserved. Then, 960 eggs were simultaneously fertilized with either non-cryopreserved or frozen-thawed semen and raised singly in the presence or absence of a pathogen. We found no significant effects of cryopreservation on fertilization rates, and no effects on growth, survival nor pathogen resistance during the embryo stage. However, fertilization by cryopreserved sperm led to significantly reduced larval growth after hatching. Males varied in genetic quality as determined from offspring performance, but effects of cryopreservation on larval growth were not male-specific. We conclude that cryopreservation causes a reduction in offspring growth that is easily overlooked because it only manifests itself at later developmental stages, when many other factors affect growth and survival too.
期刊介绍:
Journal of Geophysical Research (JGR) publishes original scientific research on the physical, chemical, and biological processes that contribute to the understanding of the Earth, Sun, and solar system and all of their environments and components. JGR is currently organized into seven disciplinary sections (Atmospheres, Biogeosciences, Earth Surface, Oceans, Planets, Solid Earth, Space Physics). Sections may be added or combined in response to changes in the science.