{"title":"使用社交媒体数据和分类聚类框架感知现实世界事件","authors":"Nasser Alsaedi, P. Burnap, O. Rana","doi":"10.1109/WI.2016.0039","DOIUrl":null,"url":null,"abstract":"In recent years, there has been increased interest in real-world event identification using data collected from social media, where theWeb enables the general public to post real-time reactions to terrestrial events - thereby acting as social sensors of terrestrial activity. Automatically extracting and categorizing activity from streamed data is a non-trivial task. To address this task, we present a novel event detection framework which comprises five main components: data collection, pre-processing, classification, online clustering and summarization. The integration between classification and clustering allows events to be detected - including \"disruptive\" events - incidents that threaten social safety and security, or could disrupt the social order. We evaluate our framework on a large-scale, real-world dataset from Twitter. We also compare our results to other leading approaches using Flickr MediaEval Event Detection Benchmark.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"14 1","pages":"216-223"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sensing Real-World Events Using Social Media Data and a Classification-Clustering Framework\",\"authors\":\"Nasser Alsaedi, P. Burnap, O. Rana\",\"doi\":\"10.1109/WI.2016.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there has been increased interest in real-world event identification using data collected from social media, where theWeb enables the general public to post real-time reactions to terrestrial events - thereby acting as social sensors of terrestrial activity. Automatically extracting and categorizing activity from streamed data is a non-trivial task. To address this task, we present a novel event detection framework which comprises five main components: data collection, pre-processing, classification, online clustering and summarization. The integration between classification and clustering allows events to be detected - including \\\"disruptive\\\" events - incidents that threaten social safety and security, or could disrupt the social order. We evaluate our framework on a large-scale, real-world dataset from Twitter. We also compare our results to other leading approaches using Flickr MediaEval Event Detection Benchmark.\",\"PeriodicalId\":6513,\"journal\":{\"name\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"14 1\",\"pages\":\"216-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2016.0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensing Real-World Events Using Social Media Data and a Classification-Clustering Framework
In recent years, there has been increased interest in real-world event identification using data collected from social media, where theWeb enables the general public to post real-time reactions to terrestrial events - thereby acting as social sensors of terrestrial activity. Automatically extracting and categorizing activity from streamed data is a non-trivial task. To address this task, we present a novel event detection framework which comprises five main components: data collection, pre-processing, classification, online clustering and summarization. The integration between classification and clustering allows events to be detected - including "disruptive" events - incidents that threaten social safety and security, or could disrupt the social order. We evaluate our framework on a large-scale, real-world dataset from Twitter. We also compare our results to other leading approaches using Flickr MediaEval Event Detection Benchmark.