使用社交媒体数据和分类聚类框架感知现实世界事件

Nasser Alsaedi, P. Burnap, O. Rana
{"title":"使用社交媒体数据和分类聚类框架感知现实世界事件","authors":"Nasser Alsaedi, P. Burnap, O. Rana","doi":"10.1109/WI.2016.0039","DOIUrl":null,"url":null,"abstract":"In recent years, there has been increased interest in real-world event identification using data collected from social media, where theWeb enables the general public to post real-time reactions to terrestrial events - thereby acting as social sensors of terrestrial activity. Automatically extracting and categorizing activity from streamed data is a non-trivial task. To address this task, we present a novel event detection framework which comprises five main components: data collection, pre-processing, classification, online clustering and summarization. The integration between classification and clustering allows events to be detected - including \"disruptive\" events - incidents that threaten social safety and security, or could disrupt the social order. We evaluate our framework on a large-scale, real-world dataset from Twitter. We also compare our results to other leading approaches using Flickr MediaEval Event Detection Benchmark.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"14 1","pages":"216-223"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sensing Real-World Events Using Social Media Data and a Classification-Clustering Framework\",\"authors\":\"Nasser Alsaedi, P. Burnap, O. Rana\",\"doi\":\"10.1109/WI.2016.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there has been increased interest in real-world event identification using data collected from social media, where theWeb enables the general public to post real-time reactions to terrestrial events - thereby acting as social sensors of terrestrial activity. Automatically extracting and categorizing activity from streamed data is a non-trivial task. To address this task, we present a novel event detection framework which comprises five main components: data collection, pre-processing, classification, online clustering and summarization. The integration between classification and clustering allows events to be detected - including \\\"disruptive\\\" events - incidents that threaten social safety and security, or could disrupt the social order. We evaluate our framework on a large-scale, real-world dataset from Twitter. We also compare our results to other leading approaches using Flickr MediaEval Event Detection Benchmark.\",\"PeriodicalId\":6513,\"journal\":{\"name\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"14 1\",\"pages\":\"216-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2016.0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,人们对利用从社交媒体收集的数据来识别现实世界的事件越来越感兴趣,在社交媒体上,网络使公众能够发布对地球事件的实时反应,从而充当地球活动的社会传感器。从流数据中自动提取和分类活动是一项重要的任务。为了解决这个问题,我们提出了一个新的事件检测框架,它包括五个主要部分:数据收集、预处理、分类、在线聚类和总结。将分类和聚类结合起来,可以检测到事件,包括“破坏性”事件,即威胁社会安全和保障或可能破坏社会秩序的事件。我们在来自Twitter的大规模真实数据集上评估我们的框架。我们还将我们的结果与使用Flickr MediaEval事件检测基准的其他领先方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensing Real-World Events Using Social Media Data and a Classification-Clustering Framework
In recent years, there has been increased interest in real-world event identification using data collected from social media, where theWeb enables the general public to post real-time reactions to terrestrial events - thereby acting as social sensors of terrestrial activity. Automatically extracting and categorizing activity from streamed data is a non-trivial task. To address this task, we present a novel event detection framework which comprises five main components: data collection, pre-processing, classification, online clustering and summarization. The integration between classification and clustering allows events to be detected - including "disruptive" events - incidents that threaten social safety and security, or could disrupt the social order. We evaluate our framework on a large-scale, real-world dataset from Twitter. We also compare our results to other leading approaches using Flickr MediaEval Event Detection Benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Political Power of Twitter IEEE/WIC/ACM International Conference on Web Intelligence A Distributed Approach to Constructing Travel Solutions by Exploiting Web Resources Joint Model of Topics, Expertises, Activities and Trends for Question Answering Web Applications A Multi-context BDI Recommender System: From Theory to Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1