基于降维和支持向量机的人体动作识别

L. Shiripova, E. Myasnikov
{"title":"基于降维和支持向量机的人体动作识别","authors":"L. Shiripova, E. Myasnikov","doi":"10.18287/1613-0073-2019-2391-48-53","DOIUrl":null,"url":null,"abstract":"The paper is devoted to the problem of recognizing human actions in videos recorded in the optical range of wavelengths. An approach proposed in this paper consists in the detection of a moving person on a video sequence with the subsequent size normalization, generation of subsequences and dimensionality reduction using the principal component analysis technique. The classification of human actions is carried out using a support vector machine classifier. Experimental studies performed on the Weizmann dataset allowed us to determine the best values of the method parameters. The results showed that with a small number of action classes, high classification accuracy can be achieved.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Human action recognition using dimensionality reduction and support vector machine\",\"authors\":\"L. Shiripova, E. Myasnikov\",\"doi\":\"10.18287/1613-0073-2019-2391-48-53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is devoted to the problem of recognizing human actions in videos recorded in the optical range of wavelengths. An approach proposed in this paper consists in the detection of a moving person on a video sequence with the subsequent size normalization, generation of subsequences and dimensionality reduction using the principal component analysis technique. The classification of human actions is carried out using a support vector machine classifier. Experimental studies performed on the Weizmann dataset allowed us to determine the best values of the method parameters. The results showed that with a small number of action classes, high classification accuracy can be achieved.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2391-48-53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-48-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文致力于在光学波长范围内记录的视频中识别人类行为的问题。本文提出的一种方法是在视频序列中检测运动的人,随后使用主成分分析技术进行尺寸归一化,生成子序列和降维。使用支持向量机分类器对人类行为进行分类。在Weizmann数据集上进行的实验研究使我们能够确定方法参数的最佳值。结果表明,使用较少的动作类,可以达到较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human action recognition using dimensionality reduction and support vector machine
The paper is devoted to the problem of recognizing human actions in videos recorded in the optical range of wavelengths. An approach proposed in this paper consists in the detection of a moving person on a video sequence with the subsequent size normalization, generation of subsequences and dimensionality reduction using the principal component analysis technique. The classification of human actions is carried out using a support vector machine classifier. Experimental studies performed on the Weizmann dataset allowed us to determine the best values of the method parameters. The results showed that with a small number of action classes, high classification accuracy can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1