l1和l∞范数在拟合参数曲线和曲面上的应用

I. Al-Subaihi, G. A. Watson
{"title":"l1和l∞范数在拟合参数曲线和曲面上的应用","authors":"I. Al-Subaihi,&nbsp;G. A. Watson","doi":"10.1002/anac.200410004","DOIUrl":null,"url":null,"abstract":"<p>Given a family of curves or surfaces in <i>R<sup>s</sup></i>, an important problem is that of finding a member of the family which gives a “best” fit to <i>m</i> given data points. There are many application areas, for example metrology, computer graphics, pattern recognition, and the most commonly used criterion is the least squares norm. However, there may be wild points in the data, and a more robust estimator such as the <i>l</i><sub>1</sub> norm may be more appropriate. On the other hand, the object of modelling the data may be to assess the quality of a manufactured part, so that accept/reject decisions may be required, and this suggests the use of the Chebyshev norm.</p><p>We consider here the use of the <i>l</i><sub>1</sub> and <i>l</i><sub>∞</sub> norms in the context of fitting to data curves and surfaces defined parametrically. There are different ways to formulate the problems, and we review here formulations, theory and methods which generalize in a natural way those available for least squares. As well as considering methods which apply in general, some attention is given to a fundamental fitting problem, that of lines in three dimensions. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 2","pages":"363-376"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410004","citationCount":"15","resultStr":"{\"title\":\"The Use of the l1 and l∞ Norms in Fitting Parametric Curves and Surfaces to Data\",\"authors\":\"I. Al-Subaihi,&nbsp;G. A. Watson\",\"doi\":\"10.1002/anac.200410004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a family of curves or surfaces in <i>R<sup>s</sup></i>, an important problem is that of finding a member of the family which gives a “best” fit to <i>m</i> given data points. There are many application areas, for example metrology, computer graphics, pattern recognition, and the most commonly used criterion is the least squares norm. However, there may be wild points in the data, and a more robust estimator such as the <i>l</i><sub>1</sub> norm may be more appropriate. On the other hand, the object of modelling the data may be to assess the quality of a manufactured part, so that accept/reject decisions may be required, and this suggests the use of the Chebyshev norm.</p><p>We consider here the use of the <i>l</i><sub>1</sub> and <i>l</i><sub>∞</sub> norms in the context of fitting to data curves and surfaces defined parametrically. There are different ways to formulate the problems, and we review here formulations, theory and methods which generalize in a natural way those available for least squares. As well as considering methods which apply in general, some attention is given to a fundamental fitting problem, that of lines in three dimensions. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"1 2\",\"pages\":\"363-376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200410004\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

给定r中的一系列曲线或曲面,一个重要的问题是找到其中的一个成员,使其与m个给定的数据点具有“最佳”拟合。有许多应用领域,例如计量学、计算机图形学、模式识别,最常用的准则是最小二乘范数。然而,数据中可能存在野点,并且更健壮的估计器(如l1范数)可能更合适。另一方面,对数据进行建模的目的可能是评估制造零件的质量,因此可能需要接受/拒绝决定,这表明使用切比雪夫规范。我们在这里考虑在拟合参数化定义的数据曲线和曲面的情况下使用l1和l∞范数。有不同的方法来表述这些问题,我们在这里回顾了以一种自然的方式推广最小二乘可用的公式、理论和方法。除了考虑一般适用的方法外,还考虑了一个基本的拟合问题,即三维直线的拟合问题。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of the l1 and l∞ Norms in Fitting Parametric Curves and Surfaces to Data

Given a family of curves or surfaces in Rs, an important problem is that of finding a member of the family which gives a “best” fit to m given data points. There are many application areas, for example metrology, computer graphics, pattern recognition, and the most commonly used criterion is the least squares norm. However, there may be wild points in the data, and a more robust estimator such as the l1 norm may be more appropriate. On the other hand, the object of modelling the data may be to assess the quality of a manufactured part, so that accept/reject decisions may be required, and this suggests the use of the Chebyshev norm.

We consider here the use of the l1 and l norms in the context of fitting to data curves and surfaces defined parametrically. There are different ways to formulate the problems, and we review here formulations, theory and methods which generalize in a natural way those available for least squares. As well as considering methods which apply in general, some attention is given to a fundamental fitting problem, that of lines in three dimensions. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of the Greatest Common Divisor of many polynomials using hybrid computations performed by the ERES method Analysis and Application of an Orthogonal Nodal Basis on Triangles for Discontinuous Spectral Element Methods Analytic Evaluation of Collocation Integrals for the Radiosity Equation A Symplectic Trigonometrically Fitted Modified Partitioned Runge-Kutta Method for the Numerical Integration of Orbital Problems Solving Hyperbolic PDEs in MATLAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1