一种保持最小最大最优性的对分法平均性能的改进

I. F. D. Oliveira, R. Takahashi
{"title":"一种保持最小最大最优性的对分法平均性能的改进","authors":"I. F. D. Oliveira, R. Takahashi","doi":"10.1145/3423597","DOIUrl":null,"url":null,"abstract":"We identify a class of root-searching methods that surprisingly outperform the bisection method on the average performance while retaining minmax optimality. The improvement on the average applies for any continuous distributional hypothesis. We also pinpoint one specific method within the class and show that under mild initial conditions it can attain an order of convergence of up to 1.618, i.e., the same as the secant method. Hence, we attain both an improved average performance and an improved order of convergence with no cost on the minmax optimality of the bisection method. Numerical experiments show that, on regular functions, the proposed method requires a number of function evaluations similar to current state-of-the-art methods, about 24% to 37% of the evaluations required by the bisection procedure. In problems with non-regular functions, the proposed method performs significantly better than the state-of-the-art, requiring on average 82% of the total evaluations required for the bisection method, while the other methods were outperformed by bisection. In the worst case, while current state-of-the-art commercial solvers required two to three times the number of function evaluations of bisection, our proposed method remained within the minmax bounds of the bisection method.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"29 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality\",\"authors\":\"I. F. D. Oliveira, R. Takahashi\",\"doi\":\"10.1145/3423597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify a class of root-searching methods that surprisingly outperform the bisection method on the average performance while retaining minmax optimality. The improvement on the average applies for any continuous distributional hypothesis. We also pinpoint one specific method within the class and show that under mild initial conditions it can attain an order of convergence of up to 1.618, i.e., the same as the secant method. Hence, we attain both an improved average performance and an improved order of convergence with no cost on the minmax optimality of the bisection method. Numerical experiments show that, on regular functions, the proposed method requires a number of function evaluations similar to current state-of-the-art methods, about 24% to 37% of the evaluations required by the bisection procedure. In problems with non-regular functions, the proposed method performs significantly better than the state-of-the-art, requiring on average 82% of the total evaluations required for the bisection method, while the other methods were outperformed by bisection. In the worst case, while current state-of-the-art commercial solvers required two to three times the number of function evaluations of bisection, our proposed method remained within the minmax bounds of the bisection method.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"29 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3423597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3423597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们确定了一类根搜索方法,它们在保持最小最大最优性的同时,在平均性能上惊人地优于二分法。对平均值的改进适用于任何连续分布假设。我们还指出了一类中的一个特定方法,并表明在温和的初始条件下,它可以获得高达1.618的收敛阶,即与割线方法相同。因此,我们获得了改进的平均性能和改进的收敛顺序,而没有代价的最小最大最优性的二分法。数值实验表明,对于正则函数,所提出的方法需要与当前最先进的方法相似的许多函数评估,约为对分法所需评估的24%至37%。在非正则函数问题中,该方法的性能明显优于最先进的方法,平均只需等分法所需总评估量的82%,而其他方法的性能都优于等分法。在最坏的情况下,虽然目前最先进的商业求解器需要两到三倍的对分函数评估次数,但我们提出的方法仍然在对分方法的最小最大值范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality
We identify a class of root-searching methods that surprisingly outperform the bisection method on the average performance while retaining minmax optimality. The improvement on the average applies for any continuous distributional hypothesis. We also pinpoint one specific method within the class and show that under mild initial conditions it can attain an order of convergence of up to 1.618, i.e., the same as the secant method. Hence, we attain both an improved average performance and an improved order of convergence with no cost on the minmax optimality of the bisection method. Numerical experiments show that, on regular functions, the proposed method requires a number of function evaluations similar to current state-of-the-art methods, about 24% to 37% of the evaluations required by the bisection procedure. In problems with non-regular functions, the proposed method performs significantly better than the state-of-the-art, requiring on average 82% of the total evaluations required for the bisection method, while the other methods were outperformed by bisection. In the worst case, while current state-of-the-art commercial solvers required two to three times the number of function evaluations of bisection, our proposed method remained within the minmax bounds of the bisection method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configurable Open-source Data Structure for Distributed Conforming Unstructured Homogeneous Meshes with GPU Support Algorithm 1027: NOMAD Version 4: Nonlinear Optimization with the MADS Algorithm Toward Accurate and Fast Summation Algorithm 1028: VTMOP: Solver for Blackbox Multiobjective Optimization Problems Parallel QR Factorization of Block Low-rank Matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1