褪黑素及其对细胞功能和存活的普遍影响:综述

W. M. T. Kuwabara, P. R. Gomes, Jéssica Andrade-Silva, J. S. Soares Júnior, F. Amaral, J. Cipolla-Neto
{"title":"褪黑素及其对细胞功能和存活的普遍影响:综述","authors":"W. M. T. Kuwabara, P. R. Gomes, Jéssica Andrade-Silva, J. S. Soares Júnior, F. Amaral, J. Cipolla-Neto","doi":"10.32794/mr112500129","DOIUrl":null,"url":null,"abstract":"Melatonin, a phylogenic conserved molecule, presents in almost all living organisms and it is believed to be originated to protect the unicellular organisms from oxidative products which were emerged from aerobic respiration. Even with the acquisition of a variety of other functions along evolution, the crucial autocrine, paracrine and endocrine actions of melatonin in the regulation of cell biology were well preserved. The molecular mechanisms involved in the cell cycle that determine survival and death need to be tightly regulated. Changes in these mechanisms can trigger pathologies that compromise the entire balance of the body. In this context, melatonin acts on cellular homeostasis by regulating the main molecular mechanisms that sustain life and control death, such as synthesis and degradation of protein, energy supply and pathways which trigger death to remove the defective cell or any microorganism from the tissues. Thus, this review aims to briefly present the action mechanisms of melatonin, in addition to discussing its fundamental role in cellular processes such as synthesis and degradation of protein, mitochondrial function and cell death control.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Melatonin and its ubiquitous effects on cell function and survival: A review\",\"authors\":\"W. M. T. Kuwabara, P. R. Gomes, Jéssica Andrade-Silva, J. S. Soares Júnior, F. Amaral, J. Cipolla-Neto\",\"doi\":\"10.32794/mr112500129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melatonin, a phylogenic conserved molecule, presents in almost all living organisms and it is believed to be originated to protect the unicellular organisms from oxidative products which were emerged from aerobic respiration. Even with the acquisition of a variety of other functions along evolution, the crucial autocrine, paracrine and endocrine actions of melatonin in the regulation of cell biology were well preserved. The molecular mechanisms involved in the cell cycle that determine survival and death need to be tightly regulated. Changes in these mechanisms can trigger pathologies that compromise the entire balance of the body. In this context, melatonin acts on cellular homeostasis by regulating the main molecular mechanisms that sustain life and control death, such as synthesis and degradation of protein, energy supply and pathways which trigger death to remove the defective cell or any microorganism from the tissues. Thus, this review aims to briefly present the action mechanisms of melatonin, in addition to discussing its fundamental role in cellular processes such as synthesis and degradation of protein, mitochondrial function and cell death control.\",\"PeriodicalId\":18604,\"journal\":{\"name\":\"Melatonin Research\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melatonin Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32794/mr112500129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melatonin Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32794/mr112500129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

褪黑素是一种系统发育保守分子,几乎存在于所有生物体内,它被认为是为了保护单细胞生物免受有氧呼吸产生的氧化产物的侵害。即使在进化过程中获得了多种其他功能,褪黑素在调节细胞生物学中至关重要的自分泌、旁分泌和内分泌作用也被很好地保留了下来。细胞周期中决定生存和死亡的分子机制需要严格调控。这些机制的改变会引发损害身体整体平衡的疾病。在这种情况下,褪黑激素通过调节维持生命和控制死亡的主要分子机制,如蛋白质的合成和降解,能量供应和触发死亡的途径,从组织中清除有缺陷的细胞或任何微生物,从而作用于细胞稳态。因此,本文旨在简要介绍褪黑激素的作用机制,并讨论其在蛋白质合成和降解、线粒体功能和细胞死亡控制等细胞过程中的基本作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Melatonin and its ubiquitous effects on cell function and survival: A review
Melatonin, a phylogenic conserved molecule, presents in almost all living organisms and it is believed to be originated to protect the unicellular organisms from oxidative products which were emerged from aerobic respiration. Even with the acquisition of a variety of other functions along evolution, the crucial autocrine, paracrine and endocrine actions of melatonin in the regulation of cell biology were well preserved. The molecular mechanisms involved in the cell cycle that determine survival and death need to be tightly regulated. Changes in these mechanisms can trigger pathologies that compromise the entire balance of the body. In this context, melatonin acts on cellular homeostasis by regulating the main molecular mechanisms that sustain life and control death, such as synthesis and degradation of protein, energy supply and pathways which trigger death to remove the defective cell or any microorganism from the tissues. Thus, this review aims to briefly present the action mechanisms of melatonin, in addition to discussing its fundamental role in cellular processes such as synthesis and degradation of protein, mitochondrial function and cell death control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melatonin as a promising agent alleviating endocrine deregulation and concurrent cardiovascular dysfunction: a review and future prospect Melatonin and viral infections: A review focusing on therapeutic effects and SARS-CoV-2 Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions Olfactory neuronal precursors as a model to analyze the effects of melatonin in Alzheimer's disease. Melatonin and cancer: Exploring gene networks and functional categories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1