{"title":"评估和改进计算机生成肖像的识别","authors":"Olivia Holmes, M. Banks, H. Farid","doi":"10.1145/2871714","DOIUrl":null,"url":null,"abstract":"Modern computer graphics are capable of generating highly photorealistic images. Although this can be considered a success for the computer graphics community, it has given rise to complex forensic and legal issues. A compelling example comes from the need to distinguish between computer-generated and photographic images as it pertains to the legality and prosecution of child pornography in the United States. We performed psychophysical experiments to determine the accuracy with which observers are capable of distinguishing computer-generated from photographic images. We find that observers have considerable difficulty performing this task—more difficulty than we observed 5 years ago when computer-generated imagery was not as photorealistic. We also find that observers are more likely to report that an image is photographic rather than computer generated, and that resolution has surprisingly little effect on performance. Finally, we find that a small amount of training greatly improves accuracy.","PeriodicalId":50921,"journal":{"name":"ACM Transactions on Applied Perception","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Assessing and Improving the Identification of Computer-Generated Portraits\",\"authors\":\"Olivia Holmes, M. Banks, H. Farid\",\"doi\":\"10.1145/2871714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern computer graphics are capable of generating highly photorealistic images. Although this can be considered a success for the computer graphics community, it has given rise to complex forensic and legal issues. A compelling example comes from the need to distinguish between computer-generated and photographic images as it pertains to the legality and prosecution of child pornography in the United States. We performed psychophysical experiments to determine the accuracy with which observers are capable of distinguishing computer-generated from photographic images. We find that observers have considerable difficulty performing this task—more difficulty than we observed 5 years ago when computer-generated imagery was not as photorealistic. We also find that observers are more likely to report that an image is photographic rather than computer generated, and that resolution has surprisingly little effect on performance. Finally, we find that a small amount of training greatly improves accuracy.\",\"PeriodicalId\":50921,\"journal\":{\"name\":\"ACM Transactions on Applied Perception\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Applied Perception\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2871714\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Applied Perception","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2871714","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Assessing and Improving the Identification of Computer-Generated Portraits
Modern computer graphics are capable of generating highly photorealistic images. Although this can be considered a success for the computer graphics community, it has given rise to complex forensic and legal issues. A compelling example comes from the need to distinguish between computer-generated and photographic images as it pertains to the legality and prosecution of child pornography in the United States. We performed psychophysical experiments to determine the accuracy with which observers are capable of distinguishing computer-generated from photographic images. We find that observers have considerable difficulty performing this task—more difficulty than we observed 5 years ago when computer-generated imagery was not as photorealistic. We also find that observers are more likely to report that an image is photographic rather than computer generated, and that resolution has surprisingly little effect on performance. Finally, we find that a small amount of training greatly improves accuracy.
期刊介绍:
ACM Transactions on Applied Perception (TAP) aims to strengthen the synergy between computer science and psychology/perception by publishing top quality papers that help to unify research in these fields.
The journal publishes inter-disciplinary research of significant and lasting value in any topic area that spans both Computer Science and Perceptual Psychology. All papers must incorporate both perceptual and computer science components.