基于图像的卡路里估计系统的掩模R-CNN和GrabCut算法

Tiara Lestari Subaran, Transmissia Semiawan, Nurjannah Syakrani
{"title":"基于图像的卡路里估计系统的掩模R-CNN和GrabCut算法","authors":"Tiara Lestari Subaran, Transmissia Semiawan, Nurjannah Syakrani","doi":"10.20473/jisebi.8.1.1-10","DOIUrl":null,"url":null,"abstract":"Background: A calorie estimation system based on food images uses computer vision technology to recognize and count calories. There are two key processes required in the system: detection and segmentation. Many algorithms can undertake both processes, each algorithm with different levels of accuracy.\nObjective: This study aims to improve the accuracy of calorie calculation and segmentation processes using a combination of Mask R-CNN and GrabCut algorithms.\nMethods: The segmentation mask generated from Mask R-CNN and GrabCut were combined to create a new mask, then used to calculate the calorie. By considering the image augmentation technique, the accuracy of the calorie calculation and segmentation processes were observed to evaluate the method’s performance.\nResults: The proposed method could achieve a satisfying result, with an average calculation error value of less than 10% and an F1 score above 90% in all scenarios.\nConclusion: Compared to earlier studies, the combination of Mask R-CNN and GrabCut could obtain a more satisfying result in calculating food calories with different shapes.\nKeywords: Augmentation, Calorie Calculation, Detection","PeriodicalId":16185,"journal":{"name":"Journal of Information Systems Engineering and Business Intelligence","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mask R-CNN and GrabCut Algorithm for an Image-based Calorie Estimation System\",\"authors\":\"Tiara Lestari Subaran, Transmissia Semiawan, Nurjannah Syakrani\",\"doi\":\"10.20473/jisebi.8.1.1-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: A calorie estimation system based on food images uses computer vision technology to recognize and count calories. There are two key processes required in the system: detection and segmentation. Many algorithms can undertake both processes, each algorithm with different levels of accuracy.\\nObjective: This study aims to improve the accuracy of calorie calculation and segmentation processes using a combination of Mask R-CNN and GrabCut algorithms.\\nMethods: The segmentation mask generated from Mask R-CNN and GrabCut were combined to create a new mask, then used to calculate the calorie. By considering the image augmentation technique, the accuracy of the calorie calculation and segmentation processes were observed to evaluate the method’s performance.\\nResults: The proposed method could achieve a satisfying result, with an average calculation error value of less than 10% and an F1 score above 90% in all scenarios.\\nConclusion: Compared to earlier studies, the combination of Mask R-CNN and GrabCut could obtain a more satisfying result in calculating food calories with different shapes.\\nKeywords: Augmentation, Calorie Calculation, Detection\",\"PeriodicalId\":16185,\"journal\":{\"name\":\"Journal of Information Systems Engineering and Business Intelligence\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Systems Engineering and Business Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20473/jisebi.8.1.1-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Systems Engineering and Business Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/jisebi.8.1.1-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景:一种基于食物图像的卡路里估算系统,利用计算机视觉技术来识别和计算卡路里。系统中需要两个关键的过程:检测和分割。许多算法可以同时进行这两个过程,每个算法具有不同的精度水平。目的:本研究旨在利用Mask R-CNN和GrabCut算法相结合的方法提高卡路里计算和分割过程的准确性。方法:将mask R-CNN生成的分割掩码与GrabCut合成一个新的分割掩码,并用于计算卡路里。结合图像增强技术,观察了热量计算和分割过程的准确性,评价了该方法的性能。结果:所提出的方法能够取得令人满意的结果,在所有场景下,平均计算误差值小于10%,F1得分均在90%以上。结论:与前期研究相比,Mask R-CNN与GrabCut结合计算不同形状食物热量的结果更令人满意。关键词:增强,卡路里计算,检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mask R-CNN and GrabCut Algorithm for an Image-based Calorie Estimation System
Background: A calorie estimation system based on food images uses computer vision technology to recognize and count calories. There are two key processes required in the system: detection and segmentation. Many algorithms can undertake both processes, each algorithm with different levels of accuracy. Objective: This study aims to improve the accuracy of calorie calculation and segmentation processes using a combination of Mask R-CNN and GrabCut algorithms. Methods: The segmentation mask generated from Mask R-CNN and GrabCut were combined to create a new mask, then used to calculate the calorie. By considering the image augmentation technique, the accuracy of the calorie calculation and segmentation processes were observed to evaluate the method’s performance. Results: The proposed method could achieve a satisfying result, with an average calculation error value of less than 10% and an F1 score above 90% in all scenarios. Conclusion: Compared to earlier studies, the combination of Mask R-CNN and GrabCut could obtain a more satisfying result in calculating food calories with different shapes. Keywords: Augmentation, Calorie Calculation, Detection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis on a Large Indonesian Product Review Dataset Leveraging Biotic Interaction Knowledge Graph and Network Analysis to Uncover Insect Vectors of Plant Virus Model-based Decision Support System Using a System Dynamics Approach to Increase Corn Productivity Optimizing Support Vector Machine Performance for Parkinson's Disease Diagnosis Using GridSearchCV and PCA-Based Feature Extraction A Practical Approach to Enhance Data Quality Management in Government: Case Study of Indonesian Customs and Excise Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1