采用虚拟测量系统对等离子体蚀刻过程中的粒子污染进行现场监测

M. F. Abdullah, M. K. Osman, Noratika Mohammad Somari, A. I. C. Ani, Sooria Pragash Rao S. Appanan, Loh Kwang Hooi
{"title":"采用虚拟测量系统对等离子体蚀刻过程中的粒子污染进行现场监测","authors":"M. F. Abdullah, M. K. Osman, Noratika Mohammad Somari, A. I. C. Ani, Sooria Pragash Rao S. Appanan, Loh Kwang Hooi","doi":"10.1109/ICCSCE.2016.7893629","DOIUrl":null,"url":null,"abstract":"This paper present an analysis on in-situ particle monitor using virtual metrology system for particle contamination measurement. In the process of manufacturing semiconductor devices, detecting particle contamination in process tools is a vital factor for determining the product yield. In-situ monitoring of particle contamination can be as accurate and cost effective method of contamination control depend on type of particle monitoring sensor selection and its data used for virtual metrology. In this study, data samples are obtained from three system; Statistical Process Control (SPC) data base, Advanced Process Control (APC) data base and Hamamatsu Multiband Plasma Process Monitor system. Then, an artificial neural network based classifier called multilayer perceptron (MLP) network is applied to measure the particle contamination level from the given dataset. The performance of MLP network is compared using two different algorithms namely Levernberg-Marquad (LM) and resilient back-propagation (RP) algorithm. Based on the simulation results, it can be concluded that the MLP network using LM algorithm gives the best regression result of 0.999 and 0.54 during the training and testing respectively. The outcome of this project is in-situ particle monitor would be able to detect particle in the oxide etch chamber as alternative for Surf-scan methodology for each processed wafers.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"7 1","pages":"507-511"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"In-situ particle monitor using virtual metrology system for measuring particle contamination during plasma etching process\",\"authors\":\"M. F. Abdullah, M. K. Osman, Noratika Mohammad Somari, A. I. C. Ani, Sooria Pragash Rao S. Appanan, Loh Kwang Hooi\",\"doi\":\"10.1109/ICCSCE.2016.7893629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper present an analysis on in-situ particle monitor using virtual metrology system for particle contamination measurement. In the process of manufacturing semiconductor devices, detecting particle contamination in process tools is a vital factor for determining the product yield. In-situ monitoring of particle contamination can be as accurate and cost effective method of contamination control depend on type of particle monitoring sensor selection and its data used for virtual metrology. In this study, data samples are obtained from three system; Statistical Process Control (SPC) data base, Advanced Process Control (APC) data base and Hamamatsu Multiband Plasma Process Monitor system. Then, an artificial neural network based classifier called multilayer perceptron (MLP) network is applied to measure the particle contamination level from the given dataset. The performance of MLP network is compared using two different algorithms namely Levernberg-Marquad (LM) and resilient back-propagation (RP) algorithm. Based on the simulation results, it can be concluded that the MLP network using LM algorithm gives the best regression result of 0.999 and 0.54 during the training and testing respectively. The outcome of this project is in-situ particle monitor would be able to detect particle in the oxide etch chamber as alternative for Surf-scan methodology for each processed wafers.\",\"PeriodicalId\":6540,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"7 1\",\"pages\":\"507-511\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2016.7893629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文分析了利用虚拟计量系统对颗粒污染进行现场监测的方法。在半导体器件的制造过程中,检测加工工具中的颗粒污染是决定产品良率的重要因素。颗粒污染的现场监测可以作为一种准确和经济有效的污染控制方法,这取决于颗粒监测传感器的类型选择及其用于虚拟计量的数据。在本研究中,数据样本来自三个系统;统计过程控制(SPC)数据库,先进过程控制(APC)数据库和滨松多波段等离子体过程监测系统。然后,应用基于人工神经网络的多层感知器(MLP)网络来测量给定数据集的颗粒污染程度。采用Levernberg-Marquad (LM)算法和弹性反向传播(RP)算法对MLP网络的性能进行了比较。根据仿真结果,可以得出使用LM算法的MLP网络在训练和测试时的最佳回归结果分别为0.999和0.54。该项目的结果是,现场颗粒监测器将能够检测氧化物蚀刻室中的颗粒,作为每个加工晶圆的surf扫描方法的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ particle monitor using virtual metrology system for measuring particle contamination during plasma etching process
This paper present an analysis on in-situ particle monitor using virtual metrology system for particle contamination measurement. In the process of manufacturing semiconductor devices, detecting particle contamination in process tools is a vital factor for determining the product yield. In-situ monitoring of particle contamination can be as accurate and cost effective method of contamination control depend on type of particle monitoring sensor selection and its data used for virtual metrology. In this study, data samples are obtained from three system; Statistical Process Control (SPC) data base, Advanced Process Control (APC) data base and Hamamatsu Multiband Plasma Process Monitor system. Then, an artificial neural network based classifier called multilayer perceptron (MLP) network is applied to measure the particle contamination level from the given dataset. The performance of MLP network is compared using two different algorithms namely Levernberg-Marquad (LM) and resilient back-propagation (RP) algorithm. Based on the simulation results, it can be concluded that the MLP network using LM algorithm gives the best regression result of 0.999 and 0.54 during the training and testing respectively. The outcome of this project is in-situ particle monitor would be able to detect particle in the oxide etch chamber as alternative for Surf-scan methodology for each processed wafers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RVP-FLMS: A robust variable power fractional LMS algorithm Verification of nine-phase PMSM model in d-q coordinates with mutual couplings Gamified outcomes-based teaching and learning assessment tool for Mapúa Institute of Technology Empirical testing of prototype real-time multi-hop MAC for Wireless Sensor Networks Improving intrusion detection system detection accuracy and reducing learning time by combining selected features selection and parameters optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1