{"title":"基于关联规则的直觉模糊数据挖掘","authors":"F. Petry, Ronald R. Yager","doi":"10.3390/info14070372","DOIUrl":null,"url":null,"abstract":"This paper considers approaches to the computation of association rules for intuitionistic fuzzy data. Association rules can provide guidance for assessing the significant relationships that can be determined while analyzing data. The approach uses the cardinality of intuitionistic fuzzy sets that provide a minimum and maximum range for the support and confidence metrics. A new notation is used to enable the representation of the fuzzy metrics. A running example of queries about the desirable features of vacation locations is used to illustrate.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":"41 1","pages":"372"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Mining Using Association Rules for Intuitionistic Fuzzy Data\",\"authors\":\"F. Petry, Ronald R. Yager\",\"doi\":\"10.3390/info14070372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers approaches to the computation of association rules for intuitionistic fuzzy data. Association rules can provide guidance for assessing the significant relationships that can be determined while analyzing data. The approach uses the cardinality of intuitionistic fuzzy sets that provide a minimum and maximum range for the support and confidence metrics. A new notation is used to enable the representation of the fuzzy metrics. A running example of queries about the desirable features of vacation locations is used to illustrate.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":\"41 1\",\"pages\":\"372\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14070372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Mining Using Association Rules for Intuitionistic Fuzzy Data
This paper considers approaches to the computation of association rules for intuitionistic fuzzy data. Association rules can provide guidance for assessing the significant relationships that can be determined while analyzing data. The approach uses the cardinality of intuitionistic fuzzy sets that provide a minimum and maximum range for the support and confidence metrics. A new notation is used to enable the representation of the fuzzy metrics. A running example of queries about the desirable features of vacation locations is used to illustrate.