{"title":"IoTBeholder:智能家居Wi-Fi流量对用户习惯行为的隐私窥探攻击","authors":"Qingsong Zou, Peng Cheng, LI Qing, Liao Ruoyu, Yucheng Huang, Jingyu Xiao, Yong Jiang, Qingsong Zou, Qing Li, Ruoyu Li, Yu-Chung Huang, Gareth Tyson, Jingyu Xiao","doi":"10.1145/3580890","DOIUrl":null,"url":null,"abstract":"With the deployment of a growing number of smart home IoT devices, privacy leakage has become a growing concern. Prior work on privacy-invasive device localization, classification, and activity identification have proven the existence of various privacy leakage risks in smart home environments. However, they only demonstrate limited threats in real world due to many impractical assumptions, such as having privileged access to the user’s home network. In this paper, we identify a new end-to-end attack surface using IoTBeholder, a system that performs device localization, classification, and user activity identification. IoTBeholder can be easily run and replicated on commercial off-the-shelf (COTS) devices such as mobile phones or personal computers, enabling attackers to infer user’s habitual behaviors from smart home Wi-Fi traffic alone. We set up a testbed with 23 IoT devices for evaluation in the real world. The result shows that IoTBeholder has good device classification and device activity identification performance. In addition, IoTBeholder can infer the users’ habitual behaviors and automation rules with high accuracy and interpretability. It can even accurately predict the users’ future actions, highlighting a significant threat to user privacy that IoT vendors and users should highly concern.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"43 1","pages":"43:1-43:26"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"IoTBeholder: A Privacy Snooping Attack on User Habitual Behaviors from Smart Home Wi-Fi Traffic\",\"authors\":\"Qingsong Zou, Peng Cheng, LI Qing, Liao Ruoyu, Yucheng Huang, Jingyu Xiao, Yong Jiang, Qingsong Zou, Qing Li, Ruoyu Li, Yu-Chung Huang, Gareth Tyson, Jingyu Xiao\",\"doi\":\"10.1145/3580890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the deployment of a growing number of smart home IoT devices, privacy leakage has become a growing concern. Prior work on privacy-invasive device localization, classification, and activity identification have proven the existence of various privacy leakage risks in smart home environments. However, they only demonstrate limited threats in real world due to many impractical assumptions, such as having privileged access to the user’s home network. In this paper, we identify a new end-to-end attack surface using IoTBeholder, a system that performs device localization, classification, and user activity identification. IoTBeholder can be easily run and replicated on commercial off-the-shelf (COTS) devices such as mobile phones or personal computers, enabling attackers to infer user’s habitual behaviors from smart home Wi-Fi traffic alone. We set up a testbed with 23 IoT devices for evaluation in the real world. The result shows that IoTBeholder has good device classification and device activity identification performance. In addition, IoTBeholder can infer the users’ habitual behaviors and automation rules with high accuracy and interpretability. It can even accurately predict the users’ future actions, highlighting a significant threat to user privacy that IoT vendors and users should highly concern.\",\"PeriodicalId\":20463,\"journal\":{\"name\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"volume\":\"43 1\",\"pages\":\"43:1-43:26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3580890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IoTBeholder: A Privacy Snooping Attack on User Habitual Behaviors from Smart Home Wi-Fi Traffic
With the deployment of a growing number of smart home IoT devices, privacy leakage has become a growing concern. Prior work on privacy-invasive device localization, classification, and activity identification have proven the existence of various privacy leakage risks in smart home environments. However, they only demonstrate limited threats in real world due to many impractical assumptions, such as having privileged access to the user’s home network. In this paper, we identify a new end-to-end attack surface using IoTBeholder, a system that performs device localization, classification, and user activity identification. IoTBeholder can be easily run and replicated on commercial off-the-shelf (COTS) devices such as mobile phones or personal computers, enabling attackers to infer user’s habitual behaviors from smart home Wi-Fi traffic alone. We set up a testbed with 23 IoT devices for evaluation in the real world. The result shows that IoTBeholder has good device classification and device activity identification performance. In addition, IoTBeholder can infer the users’ habitual behaviors and automation rules with high accuracy and interpretability. It can even accurately predict the users’ future actions, highlighting a significant threat to user privacy that IoT vendors and users should highly concern.