Dthreads:高效的确定性多线程

Tongping Liu, Charlie Curtsinger, E. Berger
{"title":"Dthreads:高效的确定性多线程","authors":"Tongping Liu, Charlie Curtsinger, E. Berger","doi":"10.1145/2043556.2043587","DOIUrl":null,"url":null,"abstract":"Multithreaded programming is notoriously difficult to get right. A key problem is non-determinism, which complicates debugging, testing, and reproducing errors. One way to simplify multithreaded programming is to enforce deterministic execution, but current deterministic systems for C/C++ are incomplete or impractical. These systems require program modification, do not ensure determinism in the presence of data races, do not work with general-purpose multithreaded programs, or run up to 8.4× slower than pthreads. This paper presents Dthreads, an efficient deterministic multithreading system for unmodified C/C++ applications that replaces the pthreads library. Dthreads enforces determinism in the face of data races and deadlocks. Dthreads works by exploding multithreaded applications into multiple processes, with private, copy-on-write mappings to shared memory. It uses standard virtual memory protection to track writes, and deterministically orders updates by each thread. By separating updates from different threads, Dthreads has the additional benefit of eliminating false sharing. Experimental results show that Dthreads substantially outperforms a state-of-the-art deterministic runtime system, and for a majority of the benchmarks evaluated here, matches and occasionally exceeds the performance of pthreads.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"254","resultStr":"{\"title\":\"Dthreads: efficient deterministic multithreading\",\"authors\":\"Tongping Liu, Charlie Curtsinger, E. Berger\",\"doi\":\"10.1145/2043556.2043587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multithreaded programming is notoriously difficult to get right. A key problem is non-determinism, which complicates debugging, testing, and reproducing errors. One way to simplify multithreaded programming is to enforce deterministic execution, but current deterministic systems for C/C++ are incomplete or impractical. These systems require program modification, do not ensure determinism in the presence of data races, do not work with general-purpose multithreaded programs, or run up to 8.4× slower than pthreads. This paper presents Dthreads, an efficient deterministic multithreading system for unmodified C/C++ applications that replaces the pthreads library. Dthreads enforces determinism in the face of data races and deadlocks. Dthreads works by exploding multithreaded applications into multiple processes, with private, copy-on-write mappings to shared memory. It uses standard virtual memory protection to track writes, and deterministically orders updates by each thread. By separating updates from different threads, Dthreads has the additional benefit of eliminating false sharing. Experimental results show that Dthreads substantially outperforms a state-of-the-art deterministic runtime system, and for a majority of the benchmarks evaluated here, matches and occasionally exceeds the performance of pthreads.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"254\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2043556.2043587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2043556.2043587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 254

摘要

众所周知,多线程编程很难做到正确。一个关键问题是不确定性,它使调试、测试和再现错误变得复杂。简化多线程编程的一种方法是强制执行确定性,但是当前用于C/ c++的确定性系统是不完整的或不切实际的。这些系统需要修改程序,不能确保存在数据竞争时的确定性,不能与通用多线程程序一起工作,或者运行速度比pthread慢8.4倍。本文介绍了Dthreads,一个高效的确定性多线程系统,用于未修改的C/ c++应用程序,取代了pthreads库。在面对数据竞争和死锁时,dthread强制执行确定性。Dthreads的工作原理是将多线程应用程序分解为多个进程,并使用私有的、写时复制的映射到共享内存。它使用标准的虚拟内存保护来跟踪写操作,并确定每个线程的更新顺序。通过分离来自不同线程的更新,Dthreads还具有消除错误共享的额外好处。实验结果表明,dthread的性能大大优于最先进的确定性运行时系统,并且对于本文评估的大多数基准测试,dthread的性能与pthread相当,有时甚至超过了pthread。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dthreads: efficient deterministic multithreading
Multithreaded programming is notoriously difficult to get right. A key problem is non-determinism, which complicates debugging, testing, and reproducing errors. One way to simplify multithreaded programming is to enforce deterministic execution, but current deterministic systems for C/C++ are incomplete or impractical. These systems require program modification, do not ensure determinism in the presence of data races, do not work with general-purpose multithreaded programs, or run up to 8.4× slower than pthreads. This paper presents Dthreads, an efficient deterministic multithreading system for unmodified C/C++ applications that replaces the pthreads library. Dthreads enforces determinism in the face of data races and deadlocks. Dthreads works by exploding multithreaded applications into multiple processes, with private, copy-on-write mappings to shared memory. It uses standard virtual memory protection to track writes, and deterministically orders updates by each thread. By separating updates from different threads, Dthreads has the additional benefit of eliminating false sharing. Experimental results show that Dthreads substantially outperforms a state-of-the-art deterministic runtime system, and for a majority of the benchmarks evaluated here, matches and occasionally exceeds the performance of pthreads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ResilientFL '21: Proceedings of the First Workshop on Systems Challenges in Reliable and Secure Federated Learning, Virtual Event / Koblenz, Germany, 25 October 2021 SOSP '21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021 Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability Efficient deterministic multithreading through schedule relaxation SILT: a memory-efficient, high-performance key-value store
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1