综述:不同环氧-粘土纳米复合材料合成方法中粘土改性剂(closite类型)的比较

Muhammad Yunus Firdaus, Herlin Octaviani, H. Herlini, N. Fatimah, T. Mulyaningsih, Zachnaz Fairuuz, A. Nandiyanto
{"title":"综述:不同环氧-粘土纳米复合材料合成方法中粘土改性剂(closite类型)的比较","authors":"Muhammad Yunus Firdaus, Herlin Octaviani, H. Herlini, N. Fatimah, T. Mulyaningsih, Zachnaz Fairuuz, A. Nandiyanto","doi":"10.13171/MJC02101071553MYF","DOIUrl":null,"url":null,"abstract":"Nanocomposites are a new material discovery in the 21st century. One of the nanocomposite materials which are useful in life is epoxy-clay nanocomposites. Epoxy clay nanocomposites have a reasonably wide application in industrial fields such as aerospace, defense, automobile, etc. The purpose of writing this review is to conduct a literature review on mechanical properties in various Cloisite as a filler of Epoxy-clay Nanocomposites. There are several examples of cloisite, namely Cloisite 10A, Cloisite 15A, Cloisite 20A, Cloisite 25A, Cloisite 30B, and Cloisite 93A. Cloisite has the advantage of producing mechanical properties, especially in the tensile modulus and strength, which is more increased than conventional reinforcing materials. These methods' synthesis results were then characterized using TEM, SEM, XRD, and other tests to determine their mechanical properties. The material parameters resulting from nanocomposites' synthesis are well seen from the high Tensile strength and modulus values. The highest increase in mechanical properties was found in the cloisite 93A by the ultrasonic synthesis method or mechanical stirring based on the study results.","PeriodicalId":18513,"journal":{"name":"Mediterranean Journal of Chemistry","volume":"117 1","pages":"54-74"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Review: The Comparison of Clay Modifier (Cloisite Types) in Various Epoxy-Clay Nanocomposite Synthesis Methods\",\"authors\":\"Muhammad Yunus Firdaus, Herlin Octaviani, H. Herlini, N. Fatimah, T. Mulyaningsih, Zachnaz Fairuuz, A. Nandiyanto\",\"doi\":\"10.13171/MJC02101071553MYF\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocomposites are a new material discovery in the 21st century. One of the nanocomposite materials which are useful in life is epoxy-clay nanocomposites. Epoxy clay nanocomposites have a reasonably wide application in industrial fields such as aerospace, defense, automobile, etc. The purpose of writing this review is to conduct a literature review on mechanical properties in various Cloisite as a filler of Epoxy-clay Nanocomposites. There are several examples of cloisite, namely Cloisite 10A, Cloisite 15A, Cloisite 20A, Cloisite 25A, Cloisite 30B, and Cloisite 93A. Cloisite has the advantage of producing mechanical properties, especially in the tensile modulus and strength, which is more increased than conventional reinforcing materials. These methods' synthesis results were then characterized using TEM, SEM, XRD, and other tests to determine their mechanical properties. The material parameters resulting from nanocomposites' synthesis are well seen from the high Tensile strength and modulus values. The highest increase in mechanical properties was found in the cloisite 93A by the ultrasonic synthesis method or mechanical stirring based on the study results.\",\"PeriodicalId\":18513,\"journal\":{\"name\":\"Mediterranean Journal of Chemistry\",\"volume\":\"117 1\",\"pages\":\"54-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mediterranean Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13171/MJC02101071553MYF\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13171/MJC02101071553MYF","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

纳米复合材料是21世纪发现的一种新型材料。环氧粘土纳米复合材料是应用于生活中的纳米复合材料之一。环氧粘土纳米复合材料在航空航天、国防、汽车等工业领域有着相当广泛的应用。本文主要综述了各种Cloisite作为环氧-粘土纳米复合材料填料的力学性能。cloite有几个例子,分别是cloite 10A、cloite 15A、cloite 20A、cloite 25A、cloite 30B和cloite 93A。Cloisite具有生产机械性能的优势,特别是在拉伸模量和强度上,比常规增强材料有更多的提高。然后用TEM、SEM、XRD等测试方法对合成结果进行表征,确定其力学性能。纳米复合材料具有较高的抗拉强度和模量。在研究结果的基础上,超声波合成法和机械搅拌法对closite 93A的力学性能的提高最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review: The Comparison of Clay Modifier (Cloisite Types) in Various Epoxy-Clay Nanocomposite Synthesis Methods
Nanocomposites are a new material discovery in the 21st century. One of the nanocomposite materials which are useful in life is epoxy-clay nanocomposites. Epoxy clay nanocomposites have a reasonably wide application in industrial fields such as aerospace, defense, automobile, etc. The purpose of writing this review is to conduct a literature review on mechanical properties in various Cloisite as a filler of Epoxy-clay Nanocomposites. There are several examples of cloisite, namely Cloisite 10A, Cloisite 15A, Cloisite 20A, Cloisite 25A, Cloisite 30B, and Cloisite 93A. Cloisite has the advantage of producing mechanical properties, especially in the tensile modulus and strength, which is more increased than conventional reinforcing materials. These methods' synthesis results were then characterized using TEM, SEM, XRD, and other tests to determine their mechanical properties. The material parameters resulting from nanocomposites' synthesis are well seen from the high Tensile strength and modulus values. The highest increase in mechanical properties was found in the cloisite 93A by the ultrasonic synthesis method or mechanical stirring based on the study results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solid-Phase Separation and Green Removal of Amprolium Hydrochloride Veterinary Drug from Aqueous Media Using Dolomiaea Costus Roots as New Biosorbent Synthesis and Crystal Structure of Novel [(u-OCH6) (u-Cl) bis-[(bipy) (Cl)Cu(II)]]Complex In search of cytotoxic abietyl amides Crystal Structure and DFT Computations of a Solid-State Solution of Mixed Mononuclear Cu(II)/Co(II) Complex Influence of the activation method on the activity of the nickel catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1