穆鲁姆大坝在不同地震事件下的抗震性能评价

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of Mechanical Engineering and Sciences Pub Date : 2023-01-15 DOI:10.24191/jmeche.v20i1.21083
R. Ismail, Nurul Damia Sukati, Nurul Nabilah Moktar, Ainnur Zulsyamilatil Huda Abd Halim, Dayang Nur Erliyani Fitri Erwan, A. Ibrahim, Nor Azrita Mohd Amin, A. Adnan, A. Faisal
{"title":"穆鲁姆大坝在不同地震事件下的抗震性能评价","authors":"R. Ismail, Nurul Damia Sukati, Nurul Nabilah Moktar, Ainnur Zulsyamilatil Huda Abd Halim, Dayang Nur Erliyani Fitri Erwan, A. Ibrahim, Nor Azrita Mohd Amin, A. Adnan, A. Faisal","doi":"10.24191/jmeche.v20i1.21083","DOIUrl":null,"url":null,"abstract":"Dams are considered as vital assets for countries; therefore, the dam must be built to withstand natural disasters. However, the performance of the dam structure comes to attention since the Ranau earthquake occurrence in 2015 is the strongest earthquake recorded in Malaysia. The behavior of the dam became deteriorated across the year due to earthquake motion which caused damage to the dam. This study aims to assess the performance of Murum dam using Incremental Dynamic Analysis (IDA) which subjected was subjected to a set of 6 ground motion records scaled to increasing intensity levels by using ABAQUS. A different scale Peak Ground Acceleration (PGA) of 0.05 g, 0.10 g, 0.15 g, 0.20 g, and 0.30 g were applied in this study. Based on the results, the cracking area increases when the acceleration increases due to the high tensile stress. The maximum displacement value was located at the crest part of the dam. The findings revealed that the concentration of stresses in the dam body, especially heel and neck. The maximum normal stress was found at the heel zone of the dam. The trend of maximum shear stress shows a fluctuated value when the scale PGA increased. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Performance Assessment of Murum Dam Under Various Seismic Event\",\"authors\":\"R. Ismail, Nurul Damia Sukati, Nurul Nabilah Moktar, Ainnur Zulsyamilatil Huda Abd Halim, Dayang Nur Erliyani Fitri Erwan, A. Ibrahim, Nor Azrita Mohd Amin, A. Adnan, A. Faisal\",\"doi\":\"10.24191/jmeche.v20i1.21083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dams are considered as vital assets for countries; therefore, the dam must be built to withstand natural disasters. However, the performance of the dam structure comes to attention since the Ranau earthquake occurrence in 2015 is the strongest earthquake recorded in Malaysia. The behavior of the dam became deteriorated across the year due to earthquake motion which caused damage to the dam. This study aims to assess the performance of Murum dam using Incremental Dynamic Analysis (IDA) which subjected was subjected to a set of 6 ground motion records scaled to increasing intensity levels by using ABAQUS. A different scale Peak Ground Acceleration (PGA) of 0.05 g, 0.10 g, 0.15 g, 0.20 g, and 0.30 g were applied in this study. Based on the results, the cracking area increases when the acceleration increases due to the high tensile stress. The maximum displacement value was located at the crest part of the dam. The findings revealed that the concentration of stresses in the dam body, especially heel and neck. The maximum normal stress was found at the heel zone of the dam. The trend of maximum shear stress shows a fluctuated value when the scale PGA increased. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jmeche.v20i1.21083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i1.21083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

大坝被认为是国家的重要资产;因此,大坝的建造必须能够抵御自然灾害。然而,由于2015年发生的拉瑙地震是马来西亚有记录以来最强的地震,大坝结构的性能受到了关注。由于地震运动对坝体的破坏,坝体的性能逐年恶化。本研究的目的是利用增量动力分析(IDA)来评估穆鲁姆大坝的性能,该大坝受到了一组6个地面运动记录的影响,这些记录通过ABAQUS来增加强度水平。本研究采用了0.05 g、0.10 g、0.15 g、0.20 g和0.30 g不同比例的峰值地面加速度(PGA)。结果表明,由于高拉应力,当加速度增大时,裂纹面积增大。最大位移值位于坝顶部分。结果表明,应力集中在坝体,特别是坝后和坝颈。最大法向应力出现在坝后跟区。随着尺度PGA的增大,最大剪应力的变化趋势呈波动值。这表明,基于地震荷载的大坝性能水平取决于地震动模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Performance Assessment of Murum Dam Under Various Seismic Event
Dams are considered as vital assets for countries; therefore, the dam must be built to withstand natural disasters. However, the performance of the dam structure comes to attention since the Ranau earthquake occurrence in 2015 is the strongest earthquake recorded in Malaysia. The behavior of the dam became deteriorated across the year due to earthquake motion which caused damage to the dam. This study aims to assess the performance of Murum dam using Incremental Dynamic Analysis (IDA) which subjected was subjected to a set of 6 ground motion records scaled to increasing intensity levels by using ABAQUS. A different scale Peak Ground Acceleration (PGA) of 0.05 g, 0.10 g, 0.15 g, 0.20 g, and 0.30 g were applied in this study. Based on the results, the cracking area increases when the acceleration increases due to the high tensile stress. The maximum displacement value was located at the crest part of the dam. The findings revealed that the concentration of stresses in the dam body, especially heel and neck. The maximum normal stress was found at the heel zone of the dam. The trend of maximum shear stress shows a fluctuated value when the scale PGA increased. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
期刊最新文献
Investigation of collision estimation with vehicle and pedestrian using CARLA simulation software Active suspension for all-terrain vehicle with intelligent control using artificial neural networks The influence of helmet certification in motorcycle helmets protective performance Sustainable considerations in additive manufacturing processes: A review Co-simulation approach for computational aero-acoustic modeling: Investigating wind-induced noise within two-way radio microphone ports cavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1