机器人堆焊对Sv-AK5焊丝焊接区组织和性能的影响

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Russian Journal of Non-Ferrous Metals Pub Date : 2022-08-19 DOI:10.17073/0021-3438-2022-4-67-74
K. Nikitin, D. A. Dunaev, S. S. Zhatkin, V. I. Nikitin
{"title":"机器人堆焊对Sv-AK5焊丝焊接区组织和性能的影响","authors":"K. Nikitin, D. A. Dunaev, S. S. Zhatkin, V. I. Nikitin","doi":"10.17073/0021-3438-2022-4-67-74","DOIUrl":null,"url":null,"abstract":"The study covers the effect of welding arc current (47, 57, and 67 A) on the structure and properties of deposited samples obtained by robotic electric arc surfacing. Sv-AK5 (ER4043) welding wire of the Al-Si system was used as a filler material. Surfacing was carried out on a substrate in the form of a 6 mm thick plate made of AMg6 alloy (Al-Mg system). During surfacing, a typical two-phase structure of a hypoeutectic composition is formed in samples typical for Al–Si alloys with a silicon content of 5 %. Along the height of deposited layers, there is a tendency to structure enlargement in the direction from the substrate, which is associated with the accumulation of heat in layers deposited along the height. As welding arc current increases, α-Al-based dendrites and eutectic silicon crystals are refined with an increase in the density and a decrease in the microhardness of deposited samples. The increase in density is due to the reduced proportion and size of gas pores, as well as refined structural components. The decrease in microhardness is associated with the increased proportion of the soft phase (α-Al dendrites) and decreased quantity of hard eutectic silicon crystals. The average content of silicon in samples deposited in three modes is in the range of 5.46–5.91%, which corresponds to the chemical composition of Sv-AK5 (ER4043) welding wire. Higher welding arc current contributes to an increase in the tensile strength and a slight decrease in the offset yield strength and relative elongation. The features of changes in the mechanical properties of deposited samples are determined by of the specific cast structure of deposited layers formed under conditions of directional solidification in the direction from the substrate.","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"50 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the structure and properties of welded zones made of Sv-AK5 welding wire at robotic surfacing\",\"authors\":\"K. Nikitin, D. A. Dunaev, S. S. Zhatkin, V. I. Nikitin\",\"doi\":\"10.17073/0021-3438-2022-4-67-74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study covers the effect of welding arc current (47, 57, and 67 A) on the structure and properties of deposited samples obtained by robotic electric arc surfacing. Sv-AK5 (ER4043) welding wire of the Al-Si system was used as a filler material. Surfacing was carried out on a substrate in the form of a 6 mm thick plate made of AMg6 alloy (Al-Mg system). During surfacing, a typical two-phase structure of a hypoeutectic composition is formed in samples typical for Al–Si alloys with a silicon content of 5 %. Along the height of deposited layers, there is a tendency to structure enlargement in the direction from the substrate, which is associated with the accumulation of heat in layers deposited along the height. As welding arc current increases, α-Al-based dendrites and eutectic silicon crystals are refined with an increase in the density and a decrease in the microhardness of deposited samples. The increase in density is due to the reduced proportion and size of gas pores, as well as refined structural components. The decrease in microhardness is associated with the increased proportion of the soft phase (α-Al dendrites) and decreased quantity of hard eutectic silicon crystals. The average content of silicon in samples deposited in three modes is in the range of 5.46–5.91%, which corresponds to the chemical composition of Sv-AK5 (ER4043) welding wire. Higher welding arc current contributes to an increase in the tensile strength and a slight decrease in the offset yield strength and relative elongation. The features of changes in the mechanical properties of deposited samples are determined by of the specific cast structure of deposited layers formed under conditions of directional solidification in the direction from the substrate.\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17073/0021-3438-2022-4-67-74\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17073/0021-3438-2022-4-67-74","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

研究了焊接电弧电流(47、57和67 A)对机器人电弧堆焊获得的沉积样品结构和性能的影响。采用Al-Si体系的Sv-AK5 (ER4043)焊丝作为填充材料。堆焊在6mm厚的AMg6合金(Al-Mg系)板上进行。在堆焊过程中,在硅含量为5%的铝硅合金样品中形成了典型的亚共晶组成的两相结构。沿着沉积层的高度,在基底方向上有结构增大的趋势,这与沿高度沉积层的热量积累有关。随着焊接电弧电流的增大,α- al基枝晶和共晶硅晶体细化,沉积样品的密度增大,显微硬度降低。密度的增加是由于气孔的比例和尺寸的减小,以及结构成分的细化。显微硬度的降低与软相(α-Al枝晶)比例的增加和硬共晶硅晶体数量的减少有关。三种模式下沉积样品中硅的平均含量在5.46 ~ 5.91%之间,与Sv-AK5 (ER4043)焊丝的化学成分相对应。较高的焊接电弧电流有助于提高抗拉强度,并略微降低补偿屈服强度和相对伸长率。沉积试样力学性能变化的特征是由定向凝固条件下形成的沉积层的特定铸造组织决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of the structure and properties of welded zones made of Sv-AK5 welding wire at robotic surfacing
The study covers the effect of welding arc current (47, 57, and 67 A) on the structure and properties of deposited samples obtained by robotic electric arc surfacing. Sv-AK5 (ER4043) welding wire of the Al-Si system was used as a filler material. Surfacing was carried out on a substrate in the form of a 6 mm thick plate made of AMg6 alloy (Al-Mg system). During surfacing, a typical two-phase structure of a hypoeutectic composition is formed in samples typical for Al–Si alloys with a silicon content of 5 %. Along the height of deposited layers, there is a tendency to structure enlargement in the direction from the substrate, which is associated with the accumulation of heat in layers deposited along the height. As welding arc current increases, α-Al-based dendrites and eutectic silicon crystals are refined with an increase in the density and a decrease in the microhardness of deposited samples. The increase in density is due to the reduced proportion and size of gas pores, as well as refined structural components. The decrease in microhardness is associated with the increased proportion of the soft phase (α-Al dendrites) and decreased quantity of hard eutectic silicon crystals. The average content of silicon in samples deposited in three modes is in the range of 5.46–5.91%, which corresponds to the chemical composition of Sv-AK5 (ER4043) welding wire. Higher welding arc current contributes to an increase in the tensile strength and a slight decrease in the offset yield strength and relative elongation. The features of changes in the mechanical properties of deposited samples are determined by of the specific cast structure of deposited layers formed under conditions of directional solidification in the direction from the substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
期刊最新文献
SHS Compaction of TiC-Based Cermets Using Mechanically Activated Mixtures Exothermic Synthesis of Binary Solid Solutions Based on Hafnium and Zirconium Carbides Effect of Mechanical Activation and Combustion Parameters on SHS Compaction of Titanium Carbide Process Research and Mechanism Analysis of Pellet Roasting and Monazite Decomposition Preparation of Mo25ZrB2 Cermet by Hot Pressing Sintering and Its Static Oxidation Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1