建立GPS传感器实时LSTM定位误差预测模型

Sirui Yang, Tabatowski-Bush Ben, Weidong Xiang
{"title":"建立GPS传感器实时LSTM定位误差预测模型","authors":"Sirui Yang, Tabatowski-Bush Ben, Weidong Xiang","doi":"10.1109/VTCFall.2019.8891192","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time long short-term memory (LSTM) recurrent neural network (RNN) to trace and predict the GPS positioning errors within next one to several seconds, offering an enhance GPS positioning. The proposed LSTM prediction model was further verified over extensive experimental data captured in cities and metropolitans, urbans and highways across several middle and eastern States of the United States. The prediction accuracy of the proposed real-time LSTM can be within less than 1-3% of its ground true values outperforms those results gained by conventional statistics and linear prediction models.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"120 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Build Up a Real-Time LSTM Positioning Error Prediction Model for GPS Sensors\",\"authors\":\"Sirui Yang, Tabatowski-Bush Ben, Weidong Xiang\",\"doi\":\"10.1109/VTCFall.2019.8891192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a real-time long short-term memory (LSTM) recurrent neural network (RNN) to trace and predict the GPS positioning errors within next one to several seconds, offering an enhance GPS positioning. The proposed LSTM prediction model was further verified over extensive experimental data captured in cities and metropolitans, urbans and highways across several middle and eastern States of the United States. The prediction accuracy of the proposed real-time LSTM can be within less than 1-3% of its ground true values outperforms those results gained by conventional statistics and linear prediction models.\",\"PeriodicalId\":6713,\"journal\":{\"name\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"volume\":\"120 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2019.8891192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种实时长短期记忆(LSTM)递归神经网络(RNN),可在1 ~数秒内跟踪和预测GPS定位误差,提高GPS定位精度。通过在美国几个中东部州的城市和大都市、城市和高速公路上捕获的大量实验数据,进一步验证了所提出的LSTM预测模型。所提出的实时LSTM预测精度可以在其地面真值的1-3%以内,优于传统统计和线性预测模型的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Build Up a Real-Time LSTM Positioning Error Prediction Model for GPS Sensors
This paper presents a real-time long short-term memory (LSTM) recurrent neural network (RNN) to trace and predict the GPS positioning errors within next one to several seconds, offering an enhance GPS positioning. The proposed LSTM prediction model was further verified over extensive experimental data captured in cities and metropolitans, urbans and highways across several middle and eastern States of the United States. The prediction accuracy of the proposed real-time LSTM can be within less than 1-3% of its ground true values outperforms those results gained by conventional statistics and linear prediction models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Emergency Braking as a Fail-Safe State in Platooning: A Simulative Approach Online Task Offloading with Bandit Learning in Fog-Assisted IoT Systems Hybrid Localization: A Low Cost, Low Complexity Approach Based on Wi-Fi and Odometry Residual Energy Optimization for MIMO SWIPT Two-Way Relaying System Traffic Forecast in Mobile Networks: Classification System Using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1