种子基因集的功能基因检测与聚类

Alexander Senf, Xue-wen Chen
{"title":"种子基因集的功能基因检测与聚类","authors":"Alexander Senf, Xue-wen Chen","doi":"10.1109/BIBM.2011.48","DOIUrl":null,"url":null,"abstract":"The availability of rapidly increasing repositories of micro array data requires the help of computer-aided analysis techniques. This data combined with a growing knowledge base about molecular processes enables the use of intelligent machine learning algorithms to expand the existing knowledge base. In this paper, we propose a novel algorithm, namely iterated Hidden Markov Model, to query micro array expression data with genes known to be involved in the same function to produce novel genes involved with the same cellular function. We run this algorithm on publicly available benchmark data sets and show that it outperforms comparable machine learning approaches.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"212 1","pages":"179-184"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Gene Detection and Clustering from Seed Gene Sets\",\"authors\":\"Alexander Senf, Xue-wen Chen\",\"doi\":\"10.1109/BIBM.2011.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of rapidly increasing repositories of micro array data requires the help of computer-aided analysis techniques. This data combined with a growing knowledge base about molecular processes enables the use of intelligent machine learning algorithms to expand the existing knowledge base. In this paper, we propose a novel algorithm, namely iterated Hidden Markov Model, to query micro array expression data with genes known to be involved in the same function to produce novel genes involved with the same cellular function. We run this algorithm on publicly available benchmark data sets and show that it outperforms comparable machine learning approaches.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"212 1\",\"pages\":\"179-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迅速增加的微阵列数据库的可用性需要计算机辅助分析技术的帮助。这些数据与不断增长的分子过程知识库相结合,可以使用智能机器学习算法来扩展现有的知识库。在本文中,我们提出了一种新的算法,即迭代隐马尔可夫模型,通过查询已知参与相同功能的基因的微阵列表达数据来产生参与相同细胞功能的新基因。我们在公开可用的基准数据集上运行该算法,并表明它优于可比的机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional Gene Detection and Clustering from Seed Gene Sets
The availability of rapidly increasing repositories of micro array data requires the help of computer-aided analysis techniques. This data combined with a growing knowledge base about molecular processes enables the use of intelligent machine learning algorithms to expand the existing knowledge base. In this paper, we propose a novel algorithm, namely iterated Hidden Markov Model, to query micro array expression data with genes known to be involved in the same function to produce novel genes involved with the same cellular function. We run this algorithm on publicly available benchmark data sets and show that it outperforms comparable machine learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1