图像标注的机器学习方法综述与分析

Palekar V.R, L SatishKumar, Wardha Maharashtra India. Dmietr
{"title":"图像标注的机器学习方法综述与分析","authors":"Palekar V.R, L SatishKumar, Wardha Maharashtra India. Dmietr","doi":"10.51201/jusst12465","DOIUrl":null,"url":null,"abstract":"In current years, a large amount of image data is being collected worldwide, which is majorly generated by corporate organizations, health industry and social networking sites. With the strength of substantial level depiction of images, Annotating image has numerous applications not only in image understanding and analysis but also in some of the concern domain like medical research, rural and urban management. Automatic Image Annotation (AIA) has been raised since the late 1990s due to inherent weaknesses of manual image annotation. In this paper, a deep review of the most recent stage in the development of AIA methods is presented by synthesizing 32 literatures published during the past decades. We classify AIA methods into five categories: 1) Kernel Logistic Regression (KLR), 2) Tri-relational Graph (TG), 3) Semantically Regularised CNNRNN (S-CNN-RNN), 4) Label Correlation guided Deep Multi-view (LCDM), and 5) Multi-Modal Semantic Hash Learning (MMSHL). Considering inspiration on the basis of main idea, framework of model, complexity of computation, time complexity and accuracy in annotation Comparative analysis for various AIA methods are done.","PeriodicalId":17520,"journal":{"name":"Journal of the University of Shanghai for Science and Technology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survey and Analysis on Machine Learning Approaches for Image Annotation\",\"authors\":\"Palekar V.R, L SatishKumar, Wardha Maharashtra India. Dmietr\",\"doi\":\"10.51201/jusst12465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In current years, a large amount of image data is being collected worldwide, which is majorly generated by corporate organizations, health industry and social networking sites. With the strength of substantial level depiction of images, Annotating image has numerous applications not only in image understanding and analysis but also in some of the concern domain like medical research, rural and urban management. Automatic Image Annotation (AIA) has been raised since the late 1990s due to inherent weaknesses of manual image annotation. In this paper, a deep review of the most recent stage in the development of AIA methods is presented by synthesizing 32 literatures published during the past decades. We classify AIA methods into five categories: 1) Kernel Logistic Regression (KLR), 2) Tri-relational Graph (TG), 3) Semantically Regularised CNNRNN (S-CNN-RNN), 4) Label Correlation guided Deep Multi-view (LCDM), and 5) Multi-Modal Semantic Hash Learning (MMSHL). Considering inspiration on the basis of main idea, framework of model, complexity of computation, time complexity and accuracy in annotation Comparative analysis for various AIA methods are done.\",\"PeriodicalId\":17520,\"journal\":{\"name\":\"Journal of the University of Shanghai for Science and Technology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the University of Shanghai for Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51201/jusst12465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the University of Shanghai for Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51201/jusst12465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,世界范围内正在收集大量的图像数据,这些数据主要来自企业组织、健康行业和社交网站。随着对图像实体层次描述的增强,图像注释不仅在图像理解和分析方面有着广泛的应用,而且在医学研究、城乡管理等一些关注的领域也有着广泛的应用。自20世纪90年代末以来,由于人工图像标注的固有缺陷,自动图像标注(AIA)被提出。本文通过综合过去几十年发表的32篇文献,对AIA方法发展的最新阶段进行了深入的回顾。我们将AIA方法分为5类:1)核逻辑回归(KLR), 2)三关系图(TG), 3)语义正则化CNNRNN (S-CNN-RNN), 4)标签相关引导的深度多视图(LCDM)和5)多模态语义哈希学习(MMSHL)。从主要思想、模型框架、计算复杂度、标注时间复杂度和标注精度等方面对不同的AIA方法进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Survey and Analysis on Machine Learning Approaches for Image Annotation
In current years, a large amount of image data is being collected worldwide, which is majorly generated by corporate organizations, health industry and social networking sites. With the strength of substantial level depiction of images, Annotating image has numerous applications not only in image understanding and analysis but also in some of the concern domain like medical research, rural and urban management. Automatic Image Annotation (AIA) has been raised since the late 1990s due to inherent weaknesses of manual image annotation. In this paper, a deep review of the most recent stage in the development of AIA methods is presented by synthesizing 32 literatures published during the past decades. We classify AIA methods into five categories: 1) Kernel Logistic Regression (KLR), 2) Tri-relational Graph (TG), 3) Semantically Regularised CNNRNN (S-CNN-RNN), 4) Label Correlation guided Deep Multi-view (LCDM), and 5) Multi-Modal Semantic Hash Learning (MMSHL). Considering inspiration on the basis of main idea, framework of model, complexity of computation, time complexity and accuracy in annotation Comparative analysis for various AIA methods are done.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chemical Profiling, Larvicidal Activity and Antihemolytic Property of Allium sativum L. and Allium cepa L. Essential Oil Comparative study between sprayed and inhaled nebulized lidocaine for suppression of hemodynamic response to laryngoscopy and oral endotracheal intubation New Estimator for AR (1) Model with Missing Observations Cloud Infrastructure Automation Tools: A Review Performance Evaluation of Nested Watermarked Scheme using Objective Image Quality Metrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1