日本老钢铁道桥梁的修复与加固

Weiwei Lin
{"title":"日本老钢铁道桥梁的修复与加固","authors":"Weiwei Lin","doi":"10.4172/2165-784X.1000305","DOIUrl":null,"url":null,"abstract":"In Japan, nearly a half or even more of the existing bridges with a span exceeding 15 meters were predicted to be over 50 years old in next 10 years. Appropriate repair, strengthening, or replacement work should be performed on aged steel bridge structures to ensure their performance in service condition. A novel strengthening method using rubber-latex mortar, glass fiber reinforced polymer plates, lightweight rapid hardening concrete, and reinforcement bars is proposed for strengthening short-span steel railway bridge superstructures and for improving the seismic performance of aged column structures. To confirm the effectiveness of the strengthening method, loading tests were performed on test specimens for short-span steel railway bridges, longitudinal-lateral beam connections as well as steel columns. Numerical models were also built to simulate the structural behavior of both original and strengthened steel structures. According to the obtained results, the present renovation method can significantly enhance both rigidity and load carrying capacity of short-span steel bridge superstructure, connections, and column structures, resulting in the extension of the residual fatigue service life of bridge tarp structures and improvement of seismic performance of column structures.","PeriodicalId":52256,"journal":{"name":"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rehabilitation and Strengthening of Aged Steel Railway Bridges in Japan\",\"authors\":\"Weiwei Lin\",\"doi\":\"10.4172/2165-784X.1000305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Japan, nearly a half or even more of the existing bridges with a span exceeding 15 meters were predicted to be over 50 years old in next 10 years. Appropriate repair, strengthening, or replacement work should be performed on aged steel bridge structures to ensure their performance in service condition. A novel strengthening method using rubber-latex mortar, glass fiber reinforced polymer plates, lightweight rapid hardening concrete, and reinforcement bars is proposed for strengthening short-span steel railway bridge superstructures and for improving the seismic performance of aged column structures. To confirm the effectiveness of the strengthening method, loading tests were performed on test specimens for short-span steel railway bridges, longitudinal-lateral beam connections as well as steel columns. Numerical models were also built to simulate the structural behavior of both original and strengthened steel structures. According to the obtained results, the present renovation method can significantly enhance both rigidity and load carrying capacity of short-span steel bridge superstructure, connections, and column structures, resulting in the extension of the residual fatigue service life of bridge tarp structures and improvement of seismic performance of column structures.\",\"PeriodicalId\":52256,\"journal\":{\"name\":\"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4172/2165-784X.1000305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4172/2165-784X.1000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

在日本,预计未来10年跨度超过15米的现有桥梁中,近一半甚至更多的桥梁将超过50年。对老化的钢桥结构应进行适当的修复、加固或更换工作,以确保其在使用条件下的性能。提出了一种采用橡胶胶乳砂浆、玻璃纤维增强聚合物板、轻质快硬混凝土和钢筋的新型加固方法,用于铁路钢桥上部结构的加固和提高老化柱结构的抗震性能。为验证该加固方法的有效性,对铁路小跨钢桥、纵横梁连接和钢柱试件进行了加载试验。建立了数值模型,模拟了原钢结构和加固钢结构的结构性能。结果表明,该改造方法能显著提高短跨钢桥上部结构、节点和柱结构的刚度和承载能力,从而延长桥帘结构的剩余疲劳使用寿命,改善柱结构的抗震性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rehabilitation and Strengthening of Aged Steel Railway Bridges in Japan
In Japan, nearly a half or even more of the existing bridges with a span exceeding 15 meters were predicted to be over 50 years old in next 10 years. Appropriate repair, strengthening, or replacement work should be performed on aged steel bridge structures to ensure their performance in service condition. A novel strengthening method using rubber-latex mortar, glass fiber reinforced polymer plates, lightweight rapid hardening concrete, and reinforcement bars is proposed for strengthening short-span steel railway bridge superstructures and for improving the seismic performance of aged column structures. To confirm the effectiveness of the strengthening method, loading tests were performed on test specimens for short-span steel railway bridges, longitudinal-lateral beam connections as well as steel columns. Numerical models were also built to simulate the structural behavior of both original and strengthened steel structures. According to the obtained results, the present renovation method can significantly enhance both rigidity and load carrying capacity of short-span steel bridge superstructure, connections, and column structures, resulting in the extension of the residual fatigue service life of bridge tarp structures and improvement of seismic performance of column structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
5346
期刊最新文献
استخراج منحنیهای شدت-مدت-فراوانی به کمک نظریه فرکتال و ارزیابی اثر تغییر اقلیم بر آن (مطالعه موردی: بوشهر) Investigation of the effect of gabion-shaped obstacles on sedimentation Probabilistic zoning of hydraulic performance of water distribution network by applying key parameter uncertainty Evaluation of doubler plates effects on shear bearing behavior of RCS connections مقایسه عملکرد ترافیکی، مصرف سوخت، و آلایندگی تقاطع دارای چراغ و دوربرگردان در بزرگراههای شش-خطه
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1