基因工程Cyt b5-CYP3A4融合蛋白与por在Sf9昆虫细胞中的共表达及表达产物的体外功能表征

Zhangming Xie, Shabbir Ahmed, Wenhui Liu, Si-si Kong, Yingchun Xu, Ting Liu, Shuqing Chen
{"title":"基因工程Cyt b5-CYP3A4融合蛋白与por在Sf9昆虫细胞中的共表达及表达产物的体外功能表征","authors":"Zhangming Xie, Shabbir Ahmed, Wenhui Liu, Si-si Kong, Yingchun Xu, Ting Liu, Shuqing Chen","doi":"10.21065/1920-4159.1000223","DOIUrl":null,"url":null,"abstract":"Human cytochrome P450 3A4 (CYP3A4) is the most abundant phase I drug-metabolizing enzyme in the liver, and approximately 50% of drugs on the market are metabolized by CYP3A4. Therefore, many in vitro studies relied on recombinant CYP3A4 as screening tool to evaluate potential drug-drug interactions (DDIs) in vivo. However, limited information regarding recombinant CYP3A4 with high catalytic activity is available. So, the present study aimed to obtain recombinant CYP3A4 with high catalytic activity and to characterize its functions in vitro. To enhance the catalytic activities of heterologously expressed CYP3A4, the enzyme was fused to cytochrome b5 (b5) tail-to-head, and the fused enzyme was inserted together with NADPH–P450 reductase (POR) into a single plasmid to achieve a simultaneous expression in sf9 cells. Here, substrate binding affinities, enzymatic activities and applications in in vitro DDIs of the fused enzyme were investigated. The dissociation constant Kd of POR-cyt b5CYP3A4 was 8.3 ± 0.87 μmol/L, the Clint (Clint=Vmax/Km) was 8.57 mL/min/g protein for POR-cyt b5CYP3A4 in the metabolism of testosterone and 150.3 mL/min/g protein for midazolam. In addition, the inhibitory constant Ki of ketoconazole on testosterone metabolism was 0.013 ± 0.0038 μmol/L. The present results suggested significantly increased substrate binding affinity and enzymatic activity for the fused enzyme. Thus, the construct could be helpful for studying drug metabolisms and DDIs investigation associated with CYP3A4 in vitro. In addition, simultaneous expression of the fused enzyme and POR could provide more reproducible results based on a more stable molar ratio of CYP3A4/POR/b5.","PeriodicalId":15238,"journal":{"name":"Journal of Applied Pharmacy","volume":"98 2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coexpression of Genetically Engineered Cyt b5-CYP3A4 Fusion Protein withPOR in Sf9 Insect Cells and Functional Characterization of the ExpressedProducts in vitro\",\"authors\":\"Zhangming Xie, Shabbir Ahmed, Wenhui Liu, Si-si Kong, Yingchun Xu, Ting Liu, Shuqing Chen\",\"doi\":\"10.21065/1920-4159.1000223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human cytochrome P450 3A4 (CYP3A4) is the most abundant phase I drug-metabolizing enzyme in the liver, and approximately 50% of drugs on the market are metabolized by CYP3A4. Therefore, many in vitro studies relied on recombinant CYP3A4 as screening tool to evaluate potential drug-drug interactions (DDIs) in vivo. However, limited information regarding recombinant CYP3A4 with high catalytic activity is available. So, the present study aimed to obtain recombinant CYP3A4 with high catalytic activity and to characterize its functions in vitro. To enhance the catalytic activities of heterologously expressed CYP3A4, the enzyme was fused to cytochrome b5 (b5) tail-to-head, and the fused enzyme was inserted together with NADPH–P450 reductase (POR) into a single plasmid to achieve a simultaneous expression in sf9 cells. Here, substrate binding affinities, enzymatic activities and applications in in vitro DDIs of the fused enzyme were investigated. The dissociation constant Kd of POR-cyt b5CYP3A4 was 8.3 ± 0.87 μmol/L, the Clint (Clint=Vmax/Km) was 8.57 mL/min/g protein for POR-cyt b5CYP3A4 in the metabolism of testosterone and 150.3 mL/min/g protein for midazolam. In addition, the inhibitory constant Ki of ketoconazole on testosterone metabolism was 0.013 ± 0.0038 μmol/L. The present results suggested significantly increased substrate binding affinity and enzymatic activity for the fused enzyme. Thus, the construct could be helpful for studying drug metabolisms and DDIs investigation associated with CYP3A4 in vitro. In addition, simultaneous expression of the fused enzyme and POR could provide more reproducible results based on a more stable molar ratio of CYP3A4/POR/b5.\",\"PeriodicalId\":15238,\"journal\":{\"name\":\"Journal of Applied Pharmacy\",\"volume\":\"98 2 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21065/1920-4159.1000223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21065/1920-4159.1000223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人细胞色素P450 3A4 (CYP3A4)是肝脏中最丰富的I期药物代谢酶,市场上约50%的药物是由CYP3A4代谢的。因此,许多体外研究依赖于重组CYP3A4作为筛选工具来评估体内潜在的药物-药物相互作用(ddi)。然而,关于高催化活性的重组CYP3A4的信息有限。因此,本研究旨在获得具有高催化活性的重组CYP3A4,并对其体外功能进行表征。为了增强异源表达CYP3A4的催化活性,将该酶从头到尾与细胞色素b5 (b5)融合,并将融合酶与NADPH-P450还原酶(POR)一起插入到单个质粒中,在sf9细胞中同时表达。本文研究了该融合酶的底物结合亲和力、酶活性及其在体外ddi中的应用。POR-cyt b5CYP3A4的解离常数Kd为8.3±0.87 μmol/L, POR-cyt b5CYP3A4在睾酮代谢中的Clint (Clint=Vmax/Km)为8.57 mL/min/g,在咪达唑仑代谢中的Clint为150.3 mL/min/g。酮康唑对睾酮代谢的抑制常数Ki为0.013±0.0038 μmol/L。目前的结果表明,融合酶的底物结合亲和力和酶活性显著提高。因此,该结构可用于CYP3A4的体外药物代谢研究和ddi研究。此外,基于更稳定的CYP3A4/POR/b5的摩尔比,融合酶和POR同时表达可以提供更重复性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coexpression of Genetically Engineered Cyt b5-CYP3A4 Fusion Protein withPOR in Sf9 Insect Cells and Functional Characterization of the ExpressedProducts in vitro
Human cytochrome P450 3A4 (CYP3A4) is the most abundant phase I drug-metabolizing enzyme in the liver, and approximately 50% of drugs on the market are metabolized by CYP3A4. Therefore, many in vitro studies relied on recombinant CYP3A4 as screening tool to evaluate potential drug-drug interactions (DDIs) in vivo. However, limited information regarding recombinant CYP3A4 with high catalytic activity is available. So, the present study aimed to obtain recombinant CYP3A4 with high catalytic activity and to characterize its functions in vitro. To enhance the catalytic activities of heterologously expressed CYP3A4, the enzyme was fused to cytochrome b5 (b5) tail-to-head, and the fused enzyme was inserted together with NADPH–P450 reductase (POR) into a single plasmid to achieve a simultaneous expression in sf9 cells. Here, substrate binding affinities, enzymatic activities and applications in in vitro DDIs of the fused enzyme were investigated. The dissociation constant Kd of POR-cyt b5CYP3A4 was 8.3 ± 0.87 μmol/L, the Clint (Clint=Vmax/Km) was 8.57 mL/min/g protein for POR-cyt b5CYP3A4 in the metabolism of testosterone and 150.3 mL/min/g protein for midazolam. In addition, the inhibitory constant Ki of ketoconazole on testosterone metabolism was 0.013 ± 0.0038 μmol/L. The present results suggested significantly increased substrate binding affinity and enzymatic activity for the fused enzyme. Thus, the construct could be helpful for studying drug metabolisms and DDIs investigation associated with CYP3A4 in vitro. In addition, simultaneous expression of the fused enzyme and POR could provide more reproducible results based on a more stable molar ratio of CYP3A4/POR/b5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PHARMACEUTICAL QUALITY AND STABILITY OF FUROSEMIDE TABLETS IN TROPICAL STORAGE CONDITIONS: AN IN-VITRO ANALYSIS CARDIOTOXIC POTENCIALOF PIOGLITAZONE/AZOLE ANTIFUNGALS DRUGS INTERACTION IN RATES REPACKAGED PROPRANOLOL HYDROCHLORIDE TABLETS: PHARMACEUTICAL STABILITY IN TWO DIFFERENT STORAGE CONDITIONS Ms. AQUEOUS AND ETHANOLIC EXTRACTS OF TRACHY SPERMUM AMMI EXHIBIT COMPARABLE ANTIDEPRESSANT AND ANXIOLYTIC EFFECT TO IMIPRAMINE HYDROCHLORIDE AND DIAZEPAM POTENTIAL THREATS OF ORDINARY INVESTIGATION AND LITIGATION MODEL OF THE NATIONAL ACCOUNTABILITY BUREAU ON THE PHARMACEUTICAL AND HEALTH SYSTEM IN PAKISTAN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1