延时成像中细微时空模式的系统检测:2。粒子迁移

R. Valdés-Pérez, Christopher A. Stone
{"title":"延时成像中细微时空模式的系统检测:2。粒子迁移","authors":"R. Valdés-Pérez, Christopher A. Stone","doi":"10.1002/1361-6374(199806)6:2<71::AID-BIO2>3.0.CO;2-Q","DOIUrl":null,"url":null,"abstract":"A recent article introduced a method for detecting subtle spatio-temporal patterns within a dataset of mitotic processes. The method is based on permutation tests, and involves (1) permuting process parameters (e.g., division angle in the earlier case of mitosis), (2) calculating the effects, and (3) checking for distributional changes in a set of measures based on simple considerations of geometry. This paper examines the method’s application to a more common dataset: particles that undergo migration in three or fewer dimensions. The method is further extended in another direction: multiple types of particle are allowed. Exploiting these distinct types significantly enlarges the set of detectable patterns. Monte Carlo simulations are performed to illustrate the new capabilities. The resulting contribution is an increasingly systematic basis for the inference of patterned behavior from imaging datasets.","PeriodicalId":100176,"journal":{"name":"Bioimaging","volume":"70 1","pages":"71-78"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Systematic detection of subtle spatio‐temporal patterns in time‐lapse imaging: II. Particle migrations\",\"authors\":\"R. Valdés-Pérez, Christopher A. Stone\",\"doi\":\"10.1002/1361-6374(199806)6:2<71::AID-BIO2>3.0.CO;2-Q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent article introduced a method for detecting subtle spatio-temporal patterns within a dataset of mitotic processes. The method is based on permutation tests, and involves (1) permuting process parameters (e.g., division angle in the earlier case of mitosis), (2) calculating the effects, and (3) checking for distributional changes in a set of measures based on simple considerations of geometry. This paper examines the method’s application to a more common dataset: particles that undergo migration in three or fewer dimensions. The method is further extended in another direction: multiple types of particle are allowed. Exploiting these distinct types significantly enlarges the set of detectable patterns. Monte Carlo simulations are performed to illustrate the new capabilities. The resulting contribution is an increasingly systematic basis for the inference of patterned behavior from imaging datasets.\",\"PeriodicalId\":100176,\"journal\":{\"name\":\"Bioimaging\",\"volume\":\"70 1\",\"pages\":\"71-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/1361-6374(199806)6:2<71::AID-BIO2>3.0.CO;2-Q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1361-6374(199806)6:2<71::AID-BIO2>3.0.CO;2-Q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最近的一篇文章介绍了一种在有丝分裂过程数据集中检测细微时空模式的方法。该方法基于排列测试,涉及(1)排列过程参数(例如,有丝分裂早期情况下的分裂角度),(2)计算影响,以及(3)基于简单的几何考虑检查一组测量中的分布变化。本文研究了该方法在一个更常见的数据集上的应用:在三维或更少的维度上进行迁移的粒子。该方法在另一个方向上进一步扩展:允许多种类型的粒子。利用这些不同的类型大大扩大了可检测模式的集合。通过蒙特卡罗模拟来演示新功能。由此产生的贡献是为从成像数据集推断模式行为提供了越来越系统的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic detection of subtle spatio‐temporal patterns in time‐lapse imaging: II. Particle migrations
A recent article introduced a method for detecting subtle spatio-temporal patterns within a dataset of mitotic processes. The method is based on permutation tests, and involves (1) permuting process parameters (e.g., division angle in the earlier case of mitosis), (2) calculating the effects, and (3) checking for distributional changes in a set of measures based on simple considerations of geometry. This paper examines the method’s application to a more common dataset: particles that undergo migration in three or fewer dimensions. The method is further extended in another direction: multiple types of particle are allowed. Exploiting these distinct types significantly enlarges the set of detectable patterns. Monte Carlo simulations are performed to illustrate the new capabilities. The resulting contribution is an increasingly systematic basis for the inference of patterned behavior from imaging datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetic Particle Imaging Magnetic Resonance Imaging Quantitative evaluation of light microscopes based on image processing techniques Confocal microscopy of single molecules of the green fluorescent protein Heavy metal contrast enhancement for the selective detection of gold particles in electron microscopical sections using electron spectroscopic imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1