{"title":"线性子空间邻域保持数据嵌入的稀疏子空间聚类","authors":"Jwo-Yuh Wu, L. Huang, Wen-Hsuan Li, Hau-Hsiang Chan, Chun-Hung Liu, Rung-Hung Gau","doi":"10.1109/SAM48682.2020.9104396","DOIUrl":null,"url":null,"abstract":"Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"9 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding\",\"authors\":\"Jwo-Yuh Wu, L. Huang, Wen-Hsuan Li, Hau-Hsiang Chan, Chun-Hung Liu, Rung-Hung Gau\",\"doi\":\"10.1109/SAM48682.2020.9104396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"9 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse Subspace Clustering with Linear Subspace-Neighborhood-Preserving Data Embedding
Data dimensionality reduction via linear embedding is a typical approach to economizing the computational cost of machine learning systems. In the context of sparse subspace clustering (SSC), this paper proposes a two-step neighbor identification scheme using linear neighborhoodpreserving embedding. In the first step, a quadratically- constrained ℓ1 -minimization algorithm is solved for acquiring the side subspace neighborhood information, whereby a linear neighborhood-preserving embedding is designed accordingly. In the second step, a LASSO sparse regression algorithm is conducted for neighbor identification using the dimensionality- reduced data. The proposed embedding design explicitly takes into account the subspace neighborhood structure of the given data set. Computer simulations using real human face data show that the proposed embedding not only outperforms other existing dimensionality-reduction schemes but also improves the global data clustering accuracy when compared to the baseline solution without data compression.